越南南部人工和天然红树林中尖根蒿幼苗CO2交换的研究

Q2 Agricultural and Biological Sciences Geography, Environment, Sustainability Pub Date : 2023-06-28 DOI:10.24057/2071-9388-2022-111
N. G. Zhirenko, Van Thinh Nguyen, Juliya A. Kurbatova
{"title":"越南南部人工和天然红树林中尖根蒿幼苗CO2交换的研究","authors":"N. G. Zhirenko, Van Thinh Nguyen, Juliya A. Kurbatova","doi":"10.24057/2071-9388-2022-111","DOIUrl":null,"url":null,"abstract":"Mangrove forests are an important part of tropical coastal ecosystems. Until recently, these forests were intensively exterminated. Currently, the issue of mangrove conservation is being discussed at a number of symposiums due to their significant role in reducing the effects of greenhouse gas emissions. However, there has recently been uncertainty in estimation of CO2 fluxes in mangrove forests due to a lack of field research. The results of studies of photosynthesis at the leaf level in-situ in seedlings of Rhizophora apiculata Blume, 1827 of both natural and artificial origin are presented. The studies were carried out on a mangrove plantation growing in Can Gio Mangrove Biosphere Reserve, which is 50 kilometres from Ho Chi Minh City (South Vietnam). CO2 gas exchange during photosynthesis was measured using a gas analysing system called the LI-6800 (USA). Photosynthetically active radiation (PAR) is the main factor affecting the photosynthesis of the studied seedlings. Artificial seedlings that were grown in open areas had higher productivity and greater photosynthetic rates. It has been determined that the measured photosynthesis are scattered over three clearly marked zones, which correspond to the measurements of photosynthesis made in the pre-noon, noon and afternoon hours. The water reserves used up before noon were not fully replenished in the afternoon by the seedlings. Based on the results obtained, it has been suggested that the main inhibitory factor affecting the photosynthesis of R. apiculata (if PAR is not taken into account) is a violation of the water balance of the leaves.The optimum air temperature for photosynthesis processes in seedlings is (35 ± 2) °C. The intensity of photosynthesis also increases with an increase in the concentration of CO2 in the air. The increases of photosynthesis continue until the concentration of CO2 reaches ~1000 µmol·mol-1 and then do not increase. We associate this circumstance with the maximum possibilities of the photosynthetic apparatus of the leaf of the studied plant. The obtained research results will contribute to a better theoretical understanding of the productivity of plants of this species in the respective ecosystems, and will also allow us to move from photosynthesis at the leaf level to photosynthesis at the planting level. The work’s mathematical models can be used to model changes in R. apiculata photosynthesis from the point of view of climate change.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 Exchange Of Seedlings Of Rhizophora Apiculata Bl. In Artificial And Natural Mangrove Forests Of Southern Vietnam\",\"authors\":\"N. G. Zhirenko, Van Thinh Nguyen, Juliya A. Kurbatova\",\"doi\":\"10.24057/2071-9388-2022-111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mangrove forests are an important part of tropical coastal ecosystems. Until recently, these forests were intensively exterminated. Currently, the issue of mangrove conservation is being discussed at a number of symposiums due to their significant role in reducing the effects of greenhouse gas emissions. However, there has recently been uncertainty in estimation of CO2 fluxes in mangrove forests due to a lack of field research. The results of studies of photosynthesis at the leaf level in-situ in seedlings of Rhizophora apiculata Blume, 1827 of both natural and artificial origin are presented. The studies were carried out on a mangrove plantation growing in Can Gio Mangrove Biosphere Reserve, which is 50 kilometres from Ho Chi Minh City (South Vietnam). CO2 gas exchange during photosynthesis was measured using a gas analysing system called the LI-6800 (USA). Photosynthetically active radiation (PAR) is the main factor affecting the photosynthesis of the studied seedlings. Artificial seedlings that were grown in open areas had higher productivity and greater photosynthetic rates. It has been determined that the measured photosynthesis are scattered over three clearly marked zones, which correspond to the measurements of photosynthesis made in the pre-noon, noon and afternoon hours. The water reserves used up before noon were not fully replenished in the afternoon by the seedlings. Based on the results obtained, it has been suggested that the main inhibitory factor affecting the photosynthesis of R. apiculata (if PAR is not taken into account) is a violation of the water balance of the leaves.The optimum air temperature for photosynthesis processes in seedlings is (35 ± 2) °C. The intensity of photosynthesis also increases with an increase in the concentration of CO2 in the air. The increases of photosynthesis continue until the concentration of CO2 reaches ~1000 µmol·mol-1 and then do not increase. We associate this circumstance with the maximum possibilities of the photosynthetic apparatus of the leaf of the studied plant. The obtained research results will contribute to a better theoretical understanding of the productivity of plants of this species in the respective ecosystems, and will also allow us to move from photosynthesis at the leaf level to photosynthesis at the planting level. The work’s mathematical models can be used to model changes in R. apiculata photosynthesis from the point of view of climate change.\",\"PeriodicalId\":37517,\"journal\":{\"name\":\"Geography, Environment, Sustainability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography, Environment, Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24057/2071-9388-2022-111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2022-111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

红树林是热带沿海生态系统的重要组成部分。直到最近,这些森林才被大量灭绝。目前,由于红树林在减少温室气体排放方面的重要作用,许多专题讨论会正在讨论红树林保护问题。然而,由于缺乏实地研究,最近对红树林中二氧化碳通量的估计存在不确定性。本文报道了天然和人工来源的尖根草(Rhizophora apiculata Blume, 1827)幼苗叶片水平光合作用的原位研究结果。这些研究是在距离胡志明市(越南南部)50公里的芹焦红树林生物圈保护区的一个红树林种植园进行的。光合作用过程中的CO2气体交换使用LI-6800(美国)气体分析系统进行测量。光合有效辐射(PAR)是影响所研究幼苗光合作用的主要因素。在开阔地区种植的人工幼苗具有更高的生产力和更高的光合速率。已经确定,测量的光合作用分散在三个明确标记的区域,这与中午前,中午和下午的光合作用测量相对应。中午之前消耗掉的水分,到了下午还没有被幼苗充分补充。根据所获得的结果,认为影响尖叶蒿光合作用的主要抑制因素(如果不考虑PAR)是对叶片水分平衡的破坏。幼苗光合作用的最适温度为(35±2)℃。光合作用的强度也随着空气中二氧化碳浓度的增加而增加。在CO2浓度达到~1000µmol·mol-1后,光合作用继续增加,不再增加。我们把这种情况与所研究植物叶片的光合装置的最大可能性联系起来。获得的研究结果将有助于更好地从理论上了解该物种在各自生态系统中的植物生产力,并使我们能够从叶片水平的光合作用转向种植水平的光合作用。这项工作的数学模型可以从气候变化的角度来模拟尖叶蒿光合作用的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO2 Exchange Of Seedlings Of Rhizophora Apiculata Bl. In Artificial And Natural Mangrove Forests Of Southern Vietnam
Mangrove forests are an important part of tropical coastal ecosystems. Until recently, these forests were intensively exterminated. Currently, the issue of mangrove conservation is being discussed at a number of symposiums due to their significant role in reducing the effects of greenhouse gas emissions. However, there has recently been uncertainty in estimation of CO2 fluxes in mangrove forests due to a lack of field research. The results of studies of photosynthesis at the leaf level in-situ in seedlings of Rhizophora apiculata Blume, 1827 of both natural and artificial origin are presented. The studies were carried out on a mangrove plantation growing in Can Gio Mangrove Biosphere Reserve, which is 50 kilometres from Ho Chi Minh City (South Vietnam). CO2 gas exchange during photosynthesis was measured using a gas analysing system called the LI-6800 (USA). Photosynthetically active radiation (PAR) is the main factor affecting the photosynthesis of the studied seedlings. Artificial seedlings that were grown in open areas had higher productivity and greater photosynthetic rates. It has been determined that the measured photosynthesis are scattered over three clearly marked zones, which correspond to the measurements of photosynthesis made in the pre-noon, noon and afternoon hours. The water reserves used up before noon were not fully replenished in the afternoon by the seedlings. Based on the results obtained, it has been suggested that the main inhibitory factor affecting the photosynthesis of R. apiculata (if PAR is not taken into account) is a violation of the water balance of the leaves.The optimum air temperature for photosynthesis processes in seedlings is (35 ± 2) °C. The intensity of photosynthesis also increases with an increase in the concentration of CO2 in the air. The increases of photosynthesis continue until the concentration of CO2 reaches ~1000 µmol·mol-1 and then do not increase. We associate this circumstance with the maximum possibilities of the photosynthetic apparatus of the leaf of the studied plant. The obtained research results will contribute to a better theoretical understanding of the productivity of plants of this species in the respective ecosystems, and will also allow us to move from photosynthesis at the leaf level to photosynthesis at the planting level. The work’s mathematical models can be used to model changes in R. apiculata photosynthesis from the point of view of climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geography, Environment, Sustainability
Geography, Environment, Sustainability Social Sciences-Geography, Planning and Development
CiteScore
2.50
自引率
0.00%
发文量
37
审稿时长
12 weeks
期刊介绍: Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.
期刊最新文献
Modeling land use change of mid-sized cities in the process of metropolization. Case study La Serena-Coquimbo conurbation, Chile Land suitability of coffee cultivation under climate change influence in the Ecuadorian Amazon The 3Ps (profits, problems & planning) of dams as inevitable developmental source: a review GIS mapping of the soil cover of an urbanized territory: drainage basin of the Setun river in the west of Moscow (Russian Federation) Unraveling the spatial dynamics: exploring the urban form characteristics and COVID-19 cases in Yogyakarta city, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1