用于未来与数字全息相结合的相干单目结构照明系统的小型化

A. Stark, E. Wong, H. Babovsky, Christian Franke, R. Kowarschik
{"title":"用于未来与数字全息相结合的相干单目结构照明系统的小型化","authors":"A. Stark, E. Wong, H. Babovsky, Christian Franke, R. Kowarschik","doi":"10.37188/lam.2022.034","DOIUrl":null,"url":null,"abstract":"Miniaturization of a coherent monocular structured system for future combination holography. Abstract Holographic and 3D-measurement processes are an often-used tool in industry, medicine, and scientific applications. While small deviations of objects can be visualized by holographic means with high accuracy, optical systems with active structured illumination are a reliable source of absolute 3D-information in these fields. The combination of digital holography with structured illumination allows to simultaneously measure deformations and absolute 3D coordinates but also requires coherent light and has already been demonstrated in principle with a stereo camera setup. Multi-camera systems are limited to certain setup sizes given by the volume and distance of the detectors. Reducing the system to a one-camera (monocular) setup reduces space and acquisition costs. By using a multi-aperture illumination source an extremely high projection rate could be realized and reduced to a monocular approach with a novel voxel-calibration technique, while the projection system itself still requires a large amount of space. In this paper we present a miniaturized, monocular 3D-measurement system that works with repeatable, coherent speckles, generated by a fiber-coupled laser whose light was distributed by a fiber-switch to a diffuser plate connected with a measurement-head, also including a camera. By addressing different fibers through the switch, varying but repeatable patterns are generated. The size of the device (diameter < 3 cm) is now mainly limited by the volume of the camera. A first 3D-reconstruction of an object and an outlook for a combination of this system with digital holography is given, allowing absolute 3D-coordinates and relative deviations of object points to be measured simultaneously.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Miniaturization of a coherent monocular structured illumination system for future combination with digital holography\",\"authors\":\"A. Stark, E. Wong, H. Babovsky, Christian Franke, R. Kowarschik\",\"doi\":\"10.37188/lam.2022.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniaturization of a coherent monocular structured system for future combination holography. Abstract Holographic and 3D-measurement processes are an often-used tool in industry, medicine, and scientific applications. While small deviations of objects can be visualized by holographic means with high accuracy, optical systems with active structured illumination are a reliable source of absolute 3D-information in these fields. The combination of digital holography with structured illumination allows to simultaneously measure deformations and absolute 3D coordinates but also requires coherent light and has already been demonstrated in principle with a stereo camera setup. Multi-camera systems are limited to certain setup sizes given by the volume and distance of the detectors. Reducing the system to a one-camera (monocular) setup reduces space and acquisition costs. By using a multi-aperture illumination source an extremely high projection rate could be realized and reduced to a monocular approach with a novel voxel-calibration technique, while the projection system itself still requires a large amount of space. In this paper we present a miniaturized, monocular 3D-measurement system that works with repeatable, coherent speckles, generated by a fiber-coupled laser whose light was distributed by a fiber-switch to a diffuser plate connected with a measurement-head, also including a camera. By addressing different fibers through the switch, varying but repeatable patterns are generated. The size of the device (diameter < 3 cm) is now mainly limited by the volume of the camera. A first 3D-reconstruction of an object and an outlook for a combination of this system with digital holography is given, allowing absolute 3D-coordinates and relative deviations of object points to be measured simultaneously.\",\"PeriodicalId\":56519,\"journal\":{\"name\":\"光:先进制造(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光:先进制造(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.37188/lam.2022.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.37188/lam.2022.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用于未来组合全息术的相干单目结构系统的小型化。全息和3d测量过程是工业、医学和科学应用中常用的工具。虽然物体的微小偏差可以通过全息手段以高精度可视化,但具有主动结构化照明的光学系统是这些领域绝对3d信息的可靠来源。数字全息与结构照明的结合允许同时测量变形和绝对3D坐标,但也需要相干光,并且已经在原则上用立体摄像机设置进行了演示。多摄像机系统受限于探测器的体积和距离所决定的一定的设置尺寸。将系统减少到单摄像头(单目)设置可以减少空间和获取成本。采用多孔径照明光源可以实现极高的投影率,并通过一种新颖的体素校准技术将其简化为单眼方式,但投影系统本身仍然需要大量的空间。在本文中,我们提出了一个小型化的单目3d测量系统,该系统使用可重复的、相干的斑点,由光纤耦合激光器产生,其光通过光纤开关分布到与测量头连接的扩散板上,还包括一个相机。通过交换机对不同的光纤进行寻址,可以生成不同但可重复的图案。设备的尺寸(直径< 3厘米)现在主要受到相机体积的限制。给出了物体的第一次三维重建和该系统与数字全息相结合的前景,允许同时测量物体点的绝对三维坐标和相对偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Miniaturization of a coherent monocular structured illumination system for future combination with digital holography
Miniaturization of a coherent monocular structured system for future combination holography. Abstract Holographic and 3D-measurement processes are an often-used tool in industry, medicine, and scientific applications. While small deviations of objects can be visualized by holographic means with high accuracy, optical systems with active structured illumination are a reliable source of absolute 3D-information in these fields. The combination of digital holography with structured illumination allows to simultaneously measure deformations and absolute 3D coordinates but also requires coherent light and has already been demonstrated in principle with a stereo camera setup. Multi-camera systems are limited to certain setup sizes given by the volume and distance of the detectors. Reducing the system to a one-camera (monocular) setup reduces space and acquisition costs. By using a multi-aperture illumination source an extremely high projection rate could be realized and reduced to a monocular approach with a novel voxel-calibration technique, while the projection system itself still requires a large amount of space. In this paper we present a miniaturized, monocular 3D-measurement system that works with repeatable, coherent speckles, generated by a fiber-coupled laser whose light was distributed by a fiber-switch to a diffuser plate connected with a measurement-head, also including a camera. By addressing different fibers through the switch, varying but repeatable patterns are generated. The size of the device (diameter < 3 cm) is now mainly limited by the volume of the camera. A first 3D-reconstruction of an object and an outlook for a combination of this system with digital holography is given, allowing absolute 3D-coordinates and relative deviations of object points to be measured simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Ultra-wideband Waveguide-coupled Photodiodes Heterogeneously Integrated on a Thin-film Lithium Niobate Platform Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network Front Matter: Volume 12507 Research on key technology of compound polishing of off-axis parabolic mirror Precision polishing of the mandrel for x-ray grazing incidence mirrors in the Einstein probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1