电力系统自动调压器中PID、模糊逻辑和ANFIS控制器的比较评估

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordan Journal of Electrical Engineering Pub Date : 2022-01-01 DOI:10.5455/jjee.204-1664025424
S. Abdulla
{"title":"电力系统自动调压器中PID、模糊逻辑和ANFIS控制器的比较评估","authors":"S. Abdulla","doi":"10.5455/jjee.204-1664025424","DOIUrl":null,"url":null,"abstract":"A comparative study and performance analysis of three different controllers - namely proportional-integral-derivative (PID), PD-like fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) - utilized to control the output voltage of an automatic voltage regulator (AVR) of a power system are carried out. The obtained results show that the PID controller is capable of rejecting simultaneous disturbance signals effectively with zero steady-state error (SSE). However, it is not robust to unexpected parameter changes of the system. On the other hand, the fuzzy logic controller shows the ability to resist changes in the system parameters. Nonetheless, it exhibits both an increase of 12.5% in the SSE and fluctuations in disturbance rejection test. On the contrary, the ANFIS controller shows: i) superior performance and ii) robustness to disturbance signals and changes in the system parameters compared to the other two controllers. For these reasons, we believe that utilization of an ANFIS controller will not only promote safety, but also reliability of the AVR in power systems.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Assessment of PID, Fuzzy Logic and ANFIS Controllers in an Automatic Voltage Regulator of A Power System\",\"authors\":\"S. Abdulla\",\"doi\":\"10.5455/jjee.204-1664025424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative study and performance analysis of three different controllers - namely proportional-integral-derivative (PID), PD-like fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) - utilized to control the output voltage of an automatic voltage regulator (AVR) of a power system are carried out. The obtained results show that the PID controller is capable of rejecting simultaneous disturbance signals effectively with zero steady-state error (SSE). However, it is not robust to unexpected parameter changes of the system. On the other hand, the fuzzy logic controller shows the ability to resist changes in the system parameters. Nonetheless, it exhibits both an increase of 12.5% in the SSE and fluctuations in disturbance rejection test. On the contrary, the ANFIS controller shows: i) superior performance and ii) robustness to disturbance signals and changes in the system parameters compared to the other two controllers. For these reasons, we believe that utilization of an ANFIS controller will not only promote safety, but also reliability of the AVR in power systems.\",\"PeriodicalId\":29729,\"journal\":{\"name\":\"Jordan Journal of Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/jjee.204-1664025424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1664025424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对比例-积分-导数(PID)、类pd模糊逻辑和自适应神经模糊推理系统(ANFIS)三种用于电力系统自动调压器(AVR)输出电压控制的控制器进行了比较研究和性能分析。结果表明,该PID控制器能够有效抑制同步扰动信号,且稳态误差为零。然而,该方法对系统的非预期参数变化缺乏鲁棒性。另一方面,模糊控制器显示出抵抗系统参数变化的能力。尽管如此,它在SSE和干扰抑制测试中都表现出12.5%的增加和波动。相反,与其他两种控制器相比,ANFIS控制器表现出:i)优越的性能和ii)对干扰信号和系统参数变化的鲁棒性。基于这些原因,我们认为使用ANFIS控制器不仅可以提高电力系统中AVR的安全性,还可以提高其可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Assessment of PID, Fuzzy Logic and ANFIS Controllers in an Automatic Voltage Regulator of A Power System
A comparative study and performance analysis of three different controllers - namely proportional-integral-derivative (PID), PD-like fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) - utilized to control the output voltage of an automatic voltage regulator (AVR) of a power system are carried out. The obtained results show that the PID controller is capable of rejecting simultaneous disturbance signals effectively with zero steady-state error (SSE). However, it is not robust to unexpected parameter changes of the system. On the other hand, the fuzzy logic controller shows the ability to resist changes in the system parameters. Nonetheless, it exhibits both an increase of 12.5% in the SSE and fluctuations in disturbance rejection test. On the contrary, the ANFIS controller shows: i) superior performance and ii) robustness to disturbance signals and changes in the system parameters compared to the other two controllers. For these reasons, we believe that utilization of an ANFIS controller will not only promote safety, but also reliability of the AVR in power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
期刊最新文献
Monitoring System for a Hybrid Photovoltaic-Diesel Power System: Web-Based SCADA Approach A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification. Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems Effect of Fuel Cells on Voltage Sag Mitigation in Power Grids Using Advanced Equilibrium Optimizer and Particle Swarm Optimization Power Conditioner Design and Control for a Grid-Connected Proton Exchange Membrane Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1