封闭种群泊松捕获-重捕获对数线性模型中连续协变量的参数化

IF 1.6 Q1 STATISTICS & PROBABILITY Statistica Pub Date : 2019-01-01 DOI:10.6092/ISSN.1973-2201/9854
G. Rossi, P. Pepe, O. Curzio, M. Marchi
{"title":"封闭种群泊松捕获-重捕获对数线性模型中连续协变量的参数化","authors":"G. Rossi, P. Pepe, O. Curzio, M. Marchi","doi":"10.6092/ISSN.1973-2201/9854","DOIUrl":null,"url":null,"abstract":"The capture-recapture method is widely used by epidemiologists to estimate the size of hidden populations using incomplete and overlapping lists of subjects. Closed populations, heterogeneity of inclusion probabilities and dependence between lists are taken into consideration in this work. The main objective is to propose a new parameterization for the Poisson log linear odel (LLM) to treat continuous covariates in their original measurement scale. The analytic estimate of the confidence bounds of the hidden population is also provided. Proposed model was applied to simulated and real capture-recapture data and compared with the multinomial conditional logit model (MCLM). The proposed model is very similar to the MCLM in dealing with continuous covariates and the analytic confidence interval performs better than the bootstrap estimate in case of small sample size.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"79 1","pages":"427-443"},"PeriodicalIF":1.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameterization of Continuous Covariates in the Poisson Capture-Recapture Log Linear Model for Closed Populations\",\"authors\":\"G. Rossi, P. Pepe, O. Curzio, M. Marchi\",\"doi\":\"10.6092/ISSN.1973-2201/9854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capture-recapture method is widely used by epidemiologists to estimate the size of hidden populations using incomplete and overlapping lists of subjects. Closed populations, heterogeneity of inclusion probabilities and dependence between lists are taken into consideration in this work. The main objective is to propose a new parameterization for the Poisson log linear odel (LLM) to treat continuous covariates in their original measurement scale. The analytic estimate of the confidence bounds of the hidden population is also provided. Proposed model was applied to simulated and real capture-recapture data and compared with the multinomial conditional logit model (MCLM). The proposed model is very similar to the MCLM in dealing with continuous covariates and the analytic confidence interval performs better than the bootstrap estimate in case of small sample size.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"79 1\",\"pages\":\"427-443\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/9854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/9854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

流行病学家广泛使用捕获-再捕获方法,通过使用不完整和重叠的受试者列表来估计隐藏人群的规模。在这项工作中,考虑了封闭群体、包含概率的异质性和列表之间的依赖性。本文的主要目的是为泊松对数线性模型(LLM)提出一种新的参数化方法来处理连续协变量的原始测量尺度。给出了隐总体置信区间的分析估计。将该模型应用于模拟和真实的捕获-再捕获数据,并与多项条件logit模型(MCLM)进行比较。该模型在处理连续协变量方面与MCLM非常相似,并且在小样本量情况下,分析置信区间优于自举估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameterization of Continuous Covariates in the Poisson Capture-Recapture Log Linear Model for Closed Populations
The capture-recapture method is widely used by epidemiologists to estimate the size of hidden populations using incomplete and overlapping lists of subjects. Closed populations, heterogeneity of inclusion probabilities and dependence between lists are taken into consideration in this work. The main objective is to propose a new parameterization for the Poisson log linear odel (LLM) to treat continuous covariates in their original measurement scale. The analytic estimate of the confidence bounds of the hidden population is also provided. Proposed model was applied to simulated and real capture-recapture data and compared with the multinomial conditional logit model (MCLM). The proposed model is very similar to the MCLM in dealing with continuous covariates and the analytic confidence interval performs better than the bootstrap estimate in case of small sample size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables A Class of Univariate Non-Mesokurtic Distributions Using a Continuous Uniform Symmetrizer and Chi Generator The Marshall-Olkin Gompertz Distribution: Properties and Applications Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1