扩展奇Lomax族分布:性质与应用

IF 1.6 Q1 STATISTICS & PROBABILITY Statistica Pub Date : 2020-01-01 DOI:10.6092/ISSN.1973-2201/9765
A. Abubakari, C. C. Kandza-Tadi, R. R. Dimmua
{"title":"扩展奇Lomax族分布:性质与应用","authors":"A. Abubakari, C. C. Kandza-Tadi, R. R. Dimmua","doi":"10.6092/ISSN.1973-2201/9765","DOIUrl":null,"url":null,"abstract":"The Lomax distribution has a wide range of applications. Due to this, it has had many extensions to render it more flexible and useful to model real world data. In this study, a new family of distributions called the extended odd Lomax family of distributions is introduced by adding two extra shape parameters and one scale parameter. We derived several statistical properties of the new family of distributions. The parameters of the family of distributions are estimated by the use of maximum likelihood method and the consistency of the estimators investigated via Monte Carlo simulations. The usefulness and flexibility of the new family of distributions are illustrated by the use of two real datasets. The results show that the distributions adequately describe the datasets.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"50 1","pages":"331-354"},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extended Odd Lomax Family of Distributions: Properties and Applications\",\"authors\":\"A. Abubakari, C. C. Kandza-Tadi, R. R. Dimmua\",\"doi\":\"10.6092/ISSN.1973-2201/9765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lomax distribution has a wide range of applications. Due to this, it has had many extensions to render it more flexible and useful to model real world data. In this study, a new family of distributions called the extended odd Lomax family of distributions is introduced by adding two extra shape parameters and one scale parameter. We derived several statistical properties of the new family of distributions. The parameters of the family of distributions are estimated by the use of maximum likelihood method and the consistency of the estimators investigated via Monte Carlo simulations. The usefulness and flexibility of the new family of distributions are illustrated by the use of two real datasets. The results show that the distributions adequately describe the datasets.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"50 1\",\"pages\":\"331-354\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/9765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/9765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

Lomax分布具有广泛的应用。因此,它有许多扩展,使其更灵活,更有用,以模拟现实世界的数据。在本研究中,通过增加两个形状参数和一个尺度参数,引入了一种新的分布族,称为扩展奇Lomax分布族。我们导出了新分布族的几个统计性质。利用极大似然法估计了分布族的参数,并通过蒙特卡罗模拟研究了估计量的一致性。两个真实数据集的使用说明了新分布族的实用性和灵活性。结果表明,这些分布能很好地描述数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extended Odd Lomax Family of Distributions: Properties and Applications
The Lomax distribution has a wide range of applications. Due to this, it has had many extensions to render it more flexible and useful to model real world data. In this study, a new family of distributions called the extended odd Lomax family of distributions is introduced by adding two extra shape parameters and one scale parameter. We derived several statistical properties of the new family of distributions. The parameters of the family of distributions are estimated by the use of maximum likelihood method and the consistency of the estimators investigated via Monte Carlo simulations. The usefulness and flexibility of the new family of distributions are illustrated by the use of two real datasets. The results show that the distributions adequately describe the datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables A Class of Univariate Non-Mesokurtic Distributions Using a Continuous Uniform Symmetrizer and Chi Generator The Marshall-Olkin Gompertz Distribution: Properties and Applications Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1