阐明了超声振动增强mg - al搅拌摩擦搭接焊接的工艺机理

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2025-01-01 DOI:10.1016/j.jma.2023.09.032
Ming Zhai, Lei Shi, ChuanSong Wu
{"title":"阐明了超声振动增强mg - al搅拌摩擦搭接焊接的工艺机理","authors":"Ming Zhai,&nbsp;Lei Shi,&nbsp;ChuanSong Wu","doi":"10.1016/j.jma.2023.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>The composite structures/components made by friction stir lap welding (FSLW) of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles. To further improve the joint quality, the ultrasonic vibration (UV) is exerted in FSLW, and the UV enhanced FSLW (UVeFSLW) was developed for making Mg-to-Al dissimilar joints. The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW. An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone, and the effect of grain size distribution on the threshold thermal stress was included, so that the prediction accuracy of flow stress was further improved. With such modified constitutive equation, the numerical simulation was conducted to compare the heat generation, temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes. It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW, which suppressed the IMCs thickness at Mg-Al interface from 1.7 µm in FSLW to 1.1 µm in UVeFSLW. The exerted UV increased the horizontal materials flow ability, and decreased the upward flow ability, which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW. Therefore, the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18 %.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 1","pages":"Pages 338-355"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the process mechanism in Mg-to-Al friction stir lap welding enhanced by ultrasonic vibration\",\"authors\":\"Ming Zhai,&nbsp;Lei Shi,&nbsp;ChuanSong Wu\",\"doi\":\"10.1016/j.jma.2023.09.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The composite structures/components made by friction stir lap welding (FSLW) of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles. To further improve the joint quality, the ultrasonic vibration (UV) is exerted in FSLW, and the UV enhanced FSLW (UVeFSLW) was developed for making Mg-to-Al dissimilar joints. The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW. An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone, and the effect of grain size distribution on the threshold thermal stress was included, so that the prediction accuracy of flow stress was further improved. With such modified constitutive equation, the numerical simulation was conducted to compare the heat generation, temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes. It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW, which suppressed the IMCs thickness at Mg-Al interface from 1.7 µm in FSLW to 1.1 µm in UVeFSLW. The exerted UV increased the horizontal materials flow ability, and decreased the upward flow ability, which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW. Therefore, the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18 %.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"13 1\",\"pages\":\"Pages 338-355\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221395672300227X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221395672300227X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

镁合金片材与铝合金片材搅拌摩擦搭接(FSLW)制成的复合结构/部件在交通运输车辆制造领域具有广泛的应用潜力。为了进一步提高接头质量,在FSLW中施加超声振动(UV),开发了用于制备Mg-to-Al异种接头的UV增强FSLW (UVeFSLW)。采用数值分析和实验研究相结合的方法,对Mg/Al UVeFSLW的过程机理进行了研究。导出了与温度和应变速率相关的公式,计算焊缝熔核区不同位置的晶粒尺寸,并考虑了晶粒尺寸分布对阈值热应力的影响,从而进一步提高了流动应力的预测精度。利用修正后的本构方程,对Mg/Al UVeFSLW/FSLW工艺的产热、温度分布和材料流动行为进行了数值模拟比较。结果表明,施加的紫外使工具/工件界面上两个检查点的温度从FSLW的707/671 K降低到UVeFSLW的689/660 K,使Mg-Al界面的IMCs厚度从FSLW的1.7µm降低到UVeFSLW的1.1µm。施加的UV增加了材料的水平流动能力,降低了材料的向上流动能力,导致有效板厚/有效叠接宽度从FSLW的2.01/3.70 mm增加到UVeFSLW的2.04/4.84 mm。因此,超声波振动使Mg-to-Al搭接接头的抗拉剪切强度提高了18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating the process mechanism in Mg-to-Al friction stir lap welding enhanced by ultrasonic vibration
The composite structures/components made by friction stir lap welding (FSLW) of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles. To further improve the joint quality, the ultrasonic vibration (UV) is exerted in FSLW, and the UV enhanced FSLW (UVeFSLW) was developed for making Mg-to-Al dissimilar joints. The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW. An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone, and the effect of grain size distribution on the threshold thermal stress was included, so that the prediction accuracy of flow stress was further improved. With such modified constitutive equation, the numerical simulation was conducted to compare the heat generation, temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes. It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW, which suppressed the IMCs thickness at Mg-Al interface from 1.7 µm in FSLW to 1.1 µm in UVeFSLW. The exerted UV increased the horizontal materials flow ability, and decreased the upward flow ability, which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW. Therefore, the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spark plasma sintering of a novel Mg-0.7Ca alloy: A comprehensive study Enhancing the formability of flame-retardant magnesium alloy through Zn alloying Magnesium-reinforced sandwich structured composite membranes promote osteogenesis Understanding pyramidal slip-induced deformation bands and dynamic recrystallization in AZWX3100 magnesium alloy Unraveling electrochemical performance of magnesium vanadate-based nanostructures as advanced cathodes for rechargeable aqueous zinc-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1