Oswaldo Pablo Martínez-Rodríguez, Rodolfo García-Contreras, Rodrigo Aguayo-Ortiz, Mario Figueroa
{"title":"SarA和AgrA介导的真菌代谢产物对耐甲氧西林金黄色葡萄球菌(ATCC 43300)的抗菌和抗菌膜活性。","authors":"Oswaldo Pablo Martínez-Rodríguez, Rodolfo García-Contreras, Rodrigo Aguayo-Ortiz, Mario Figueroa","doi":"10.1080/08927014.2023.2276926","DOIUrl":null,"url":null,"abstract":"<p><p>Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) increases its antibiotic resistance by forming biofilms. Natural products (NP) or specialized metabolites have demonstrated their ability to decrease the virulence and pathogenesis of MRSA infections by inhibiting biofilm formation. The present study evaluated the antimicrobial and antibiofilm potential against MRSA of a small library of fungal NP isolated from Mexican biodiversity. The most potent antibacterial activity was observed for myrotecisin B, epiequisetin, equisetin, stachybotrolide acetate, monorden A, zearalenone, fuscin, and fusarubin. On the other hand, epifiscalin C, fiscalin C, dimethylglyotoxin, aspernolide B, and butyrolactones I and IV inhibited the biofilm formation without decreasing bacterial growth. To determine the putative mechanism of action of these compounds, docking analyses were performed against SarA and AgrA proteins, targets known to regulate biofilm production in MRSA. Overall, the results demonstrate that fungal NP may act as potential antibiofilm agents for treating MRSA infections.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"830-837"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial and antibiofilm activity of fungal metabolites on methicillin-resistant <i>Staphylococcus aureus</i> (ATCC 43300) mediated by SarA and AgrA.\",\"authors\":\"Oswaldo Pablo Martínez-Rodríguez, Rodolfo García-Contreras, Rodrigo Aguayo-Ortiz, Mario Figueroa\",\"doi\":\"10.1080/08927014.2023.2276926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) increases its antibiotic resistance by forming biofilms. Natural products (NP) or specialized metabolites have demonstrated their ability to decrease the virulence and pathogenesis of MRSA infections by inhibiting biofilm formation. The present study evaluated the antimicrobial and antibiofilm potential against MRSA of a small library of fungal NP isolated from Mexican biodiversity. The most potent antibacterial activity was observed for myrotecisin B, epiequisetin, equisetin, stachybotrolide acetate, monorden A, zearalenone, fuscin, and fusarubin. On the other hand, epifiscalin C, fiscalin C, dimethylglyotoxin, aspernolide B, and butyrolactones I and IV inhibited the biofilm formation without decreasing bacterial growth. To determine the putative mechanism of action of these compounds, docking analyses were performed against SarA and AgrA proteins, targets known to regulate biofilm production in MRSA. Overall, the results demonstrate that fungal NP may act as potential antibiofilm agents for treating MRSA infections.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"830-837\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2276926\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2276926","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Antimicrobial and antibiofilm activity of fungal metabolites on methicillin-resistant Staphylococcus aureus (ATCC 43300) mediated by SarA and AgrA.
Methicillin-resistant Staphylococcus aureus (MRSA) increases its antibiotic resistance by forming biofilms. Natural products (NP) or specialized metabolites have demonstrated their ability to decrease the virulence and pathogenesis of MRSA infections by inhibiting biofilm formation. The present study evaluated the antimicrobial and antibiofilm potential against MRSA of a small library of fungal NP isolated from Mexican biodiversity. The most potent antibacterial activity was observed for myrotecisin B, epiequisetin, equisetin, stachybotrolide acetate, monorden A, zearalenone, fuscin, and fusarubin. On the other hand, epifiscalin C, fiscalin C, dimethylglyotoxin, aspernolide B, and butyrolactones I and IV inhibited the biofilm formation without decreasing bacterial growth. To determine the putative mechanism of action of these compounds, docking analyses were performed against SarA and AgrA proteins, targets known to regulate biofilm production in MRSA. Overall, the results demonstrate that fungal NP may act as potential antibiofilm agents for treating MRSA infections.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.