Xiangdong Bi, Darra B Watts, Ian Dorman, Casianna M Kirk, Marisa Thomas, Isaiah Singleton, Colleen Malcom, Taylor Barnes, Colby Carter, Aiye Liang
{"title":"多胺树枝状大分子介导的水凝胶用于提高溶解度和抗癌药物递送。","authors":"Xiangdong Bi, Darra B Watts, Ian Dorman, Casianna M Kirk, Marisa Thomas, Isaiah Singleton, Colleen Malcom, Taylor Barnes, Colby Carter, Aiye Liang","doi":"10.1177/08853282231213712","DOIUrl":null,"url":null,"abstract":"<p><p>The application of hydrogels for anti-cancer drug delivery has garnered considerable interest in the medical field. Current cancer treatment approaches, such as chemotherapy and radiation therapy, often induce severe side effects, causing significant distress and substantial health complications to patients. Hydrogels present an appealing solution as they can be precisely injected into specific sites within the body, facilitating the sustainable release of encapsulated drugs. This localized treatment approach holds great potential for reducing toxicity levels and improving drug delivery efficacy. In this study we developed a hydrogel delivery system containing polyamidoamine (PAMAM) dendrimer and polyethylene glycol (PEG) for solubility enhancement and sustained delivery of hydrophobic anti-cancer drugs. The three selected model drugs, e.g. silibinin, camptothecin, and methotrexate, possess limited aqueous solubility and thus face restricted application. In the presence of vinyl sulfone functionalized PAMAM dendrimer at 45 mg/mL concentration, drug solubility is increased by 37-fold, 4-fold, and 10-fold for silibinin, camptothecin, and methotrexate, respectively. By further crosslinking of the functionalized PAMAM dendrimer and thiolated PEG, we successfully developed a fast-crosslinking hydrogel capable of encapsulating a significant payload of solubilized cancer drugs for sustained release. In water, the drug encapsulated hydrogels release 30%-80% of their loads in 1-4 days. MTT assays of J82 and MCF7 cells with various doses of drug encapsulated hydrogels reveal that cytotoxicity is observed for all three drugs on both J82 and MCF7 cell lines after 48 h. Notably, camptothecin exhibits higher cytotoxicity to both cell lines than silibinin and methotrexate, achieving up to 95% cell death at experimental conditions, despite its lower solubility. Our experiments provide evidence that the PAMAM dendrimer-mediated hydrogel system significantly improves the solubility of hydrophobic drugs and facilitates their sustained release. These findings position the system as a promising platform for controlled delivery of hydrophobic drugs for intratumoral cancer treatment.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"733-742"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyamidoamine dendrimer-mediated hydrogel for solubility enhancement and anti-cancer drug delivery.\",\"authors\":\"Xiangdong Bi, Darra B Watts, Ian Dorman, Casianna M Kirk, Marisa Thomas, Isaiah Singleton, Colleen Malcom, Taylor Barnes, Colby Carter, Aiye Liang\",\"doi\":\"10.1177/08853282231213712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of hydrogels for anti-cancer drug delivery has garnered considerable interest in the medical field. Current cancer treatment approaches, such as chemotherapy and radiation therapy, often induce severe side effects, causing significant distress and substantial health complications to patients. Hydrogels present an appealing solution as they can be precisely injected into specific sites within the body, facilitating the sustainable release of encapsulated drugs. This localized treatment approach holds great potential for reducing toxicity levels and improving drug delivery efficacy. In this study we developed a hydrogel delivery system containing polyamidoamine (PAMAM) dendrimer and polyethylene glycol (PEG) for solubility enhancement and sustained delivery of hydrophobic anti-cancer drugs. The three selected model drugs, e.g. silibinin, camptothecin, and methotrexate, possess limited aqueous solubility and thus face restricted application. In the presence of vinyl sulfone functionalized PAMAM dendrimer at 45 mg/mL concentration, drug solubility is increased by 37-fold, 4-fold, and 10-fold for silibinin, camptothecin, and methotrexate, respectively. By further crosslinking of the functionalized PAMAM dendrimer and thiolated PEG, we successfully developed a fast-crosslinking hydrogel capable of encapsulating a significant payload of solubilized cancer drugs for sustained release. In water, the drug encapsulated hydrogels release 30%-80% of their loads in 1-4 days. MTT assays of J82 and MCF7 cells with various doses of drug encapsulated hydrogels reveal that cytotoxicity is observed for all three drugs on both J82 and MCF7 cell lines after 48 h. Notably, camptothecin exhibits higher cytotoxicity to both cell lines than silibinin and methotrexate, achieving up to 95% cell death at experimental conditions, despite its lower solubility. Our experiments provide evidence that the PAMAM dendrimer-mediated hydrogel system significantly improves the solubility of hydrophobic drugs and facilitates their sustained release. These findings position the system as a promising platform for controlled delivery of hydrophobic drugs for intratumoral cancer treatment.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"733-742\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282231213712\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282231213712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Polyamidoamine dendrimer-mediated hydrogel for solubility enhancement and anti-cancer drug delivery.
The application of hydrogels for anti-cancer drug delivery has garnered considerable interest in the medical field. Current cancer treatment approaches, such as chemotherapy and radiation therapy, often induce severe side effects, causing significant distress and substantial health complications to patients. Hydrogels present an appealing solution as they can be precisely injected into specific sites within the body, facilitating the sustainable release of encapsulated drugs. This localized treatment approach holds great potential for reducing toxicity levels and improving drug delivery efficacy. In this study we developed a hydrogel delivery system containing polyamidoamine (PAMAM) dendrimer and polyethylene glycol (PEG) for solubility enhancement and sustained delivery of hydrophobic anti-cancer drugs. The three selected model drugs, e.g. silibinin, camptothecin, and methotrexate, possess limited aqueous solubility and thus face restricted application. In the presence of vinyl sulfone functionalized PAMAM dendrimer at 45 mg/mL concentration, drug solubility is increased by 37-fold, 4-fold, and 10-fold for silibinin, camptothecin, and methotrexate, respectively. By further crosslinking of the functionalized PAMAM dendrimer and thiolated PEG, we successfully developed a fast-crosslinking hydrogel capable of encapsulating a significant payload of solubilized cancer drugs for sustained release. In water, the drug encapsulated hydrogels release 30%-80% of their loads in 1-4 days. MTT assays of J82 and MCF7 cells with various doses of drug encapsulated hydrogels reveal that cytotoxicity is observed for all three drugs on both J82 and MCF7 cell lines after 48 h. Notably, camptothecin exhibits higher cytotoxicity to both cell lines than silibinin and methotrexate, achieving up to 95% cell death at experimental conditions, despite its lower solubility. Our experiments provide evidence that the PAMAM dendrimer-mediated hydrogel system significantly improves the solubility of hydrophobic drugs and facilitates their sustained release. These findings position the system as a promising platform for controlled delivery of hydrophobic drugs for intratumoral cancer treatment.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.