在20nm技术下使用不同逻辑样式的基于DSIG JLT的多路复用器和多路分解器的有效实现

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2023-10-13 DOI:10.1007/s10825-023-02099-5
Neha Garg, Yogesh Pratap, Sneha Kabra
{"title":"在20nm技术下使用不同逻辑样式的基于DSIG JLT的多路复用器和多路分解器的有效实现","authors":"Neha Garg,&nbsp;Yogesh Pratap,&nbsp;Sneha Kabra","doi":"10.1007/s10825-023-02099-5","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to propose a compact device to design a multiplexer and demultiplexer which can reduce the circuit area while maintaining competitive performance. A novel device, the dielectric-separated independent-gate junctionless transistor (DSIG-JLT), is used to implement functional logic of a multiplexer and demultiplexer. The DSIG-JLT has four gates that can be electrically controlled in multiple ways to realize different digital logics. The DSIG-JLT is used to realize a 2 × 1 multiplexer and 1 × 2 demultiplexer by two different logic styles. The 2 × 1 multiplexer is implemented using four transistors, and the 1 × 2 demultiplexer is implemented using five transistors by NAND logic (logic style-1). Further, by using mixed logic, the 2 × 1 multiplexer is designed using three transistors, and the 1 × 2 demultiplexer using four transistors (logic style-2). A 4 × 1 multiplexer is also implemented using eight transistors. The propagation delay, rise time, and fall time of the 2 × 1 multiplexer (logic style-1) are calculated and are found to be 24.45 ps, 31 ps, and 8.2 ps, respectively, at a supply voltage (<i>V</i><sub>DD</sub>) of 1 V. It is found that with a change in supply voltage from 0.7 to 1.0 V, the delay, rise time, and fall time decrease by 17.2%, 11.4%, and 65.69%, respectively. Simulations are carried using the ATLAS 3D device simulator in mixed mode.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient implementation of a DSIG-JLT-based multiplexer and demultiplexer using different logic styles at 20-nm technology\",\"authors\":\"Neha Garg,&nbsp;Yogesh Pratap,&nbsp;Sneha Kabra\",\"doi\":\"10.1007/s10825-023-02099-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to propose a compact device to design a multiplexer and demultiplexer which can reduce the circuit area while maintaining competitive performance. A novel device, the dielectric-separated independent-gate junctionless transistor (DSIG-JLT), is used to implement functional logic of a multiplexer and demultiplexer. The DSIG-JLT has four gates that can be electrically controlled in multiple ways to realize different digital logics. The DSIG-JLT is used to realize a 2 × 1 multiplexer and 1 × 2 demultiplexer by two different logic styles. The 2 × 1 multiplexer is implemented using four transistors, and the 1 × 2 demultiplexer is implemented using five transistors by NAND logic (logic style-1). Further, by using mixed logic, the 2 × 1 multiplexer is designed using three transistors, and the 1 × 2 demultiplexer using four transistors (logic style-2). A 4 × 1 multiplexer is also implemented using eight transistors. The propagation delay, rise time, and fall time of the 2 × 1 multiplexer (logic style-1) are calculated and are found to be 24.45 ps, 31 ps, and 8.2 ps, respectively, at a supply voltage (<i>V</i><sub>DD</sub>) of 1 V. It is found that with a change in supply voltage from 0.7 to 1.0 V, the delay, rise time, and fall time decrease by 17.2%, 11.4%, and 65.69%, respectively. Simulations are carried using the ATLAS 3D device simulator in mixed mode.</p><h3>Graphical abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-023-02099-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-023-02099-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是提出一种紧凑的器件来设计多路复用器和多路分解器,它可以在保持竞争性能的同时减少电路面积。一种新的器件,介质分离的独立栅极无接点晶体管(DSIG-JLT),用于实现多路复用器和多路分解器的功能逻辑。DSIG-JLT有四个门,可以通过多种方式进行电气控制,以实现不同的数字逻辑。DSIG-JLT用于实现2 × 1个多路复用器和1个 × 2多路分解器。2 × 1多路复用器使用四个晶体管实现 × 2解复用器由NAND逻辑(逻辑样式-1)使用五个晶体管来实现。此外,通过使用混合逻辑 × 1多路复用器使用三个晶体管设计 × 2多路分解器,使用四个晶体管(逻辑样式-2)。A 4 × 1多路复用器也使用八个晶体管来实现。2的传播延迟、上升时间和下降时间 × 1多路复用器(逻辑样式-1),并且发现在1V的电源电压(VDD)下分别为24.45ps、31ps和8.2ps。研究发现,当电源电压从0.7 V变化到1.0 V时,延迟、上升时间和下降时间分别减少了17.2%、11.4%和65.69%。在混合模式下使用ATLAS 3D设备模拟器进行模拟。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient implementation of a DSIG-JLT-based multiplexer and demultiplexer using different logic styles at 20-nm technology

The aim of this paper is to propose a compact device to design a multiplexer and demultiplexer which can reduce the circuit area while maintaining competitive performance. A novel device, the dielectric-separated independent-gate junctionless transistor (DSIG-JLT), is used to implement functional logic of a multiplexer and demultiplexer. The DSIG-JLT has four gates that can be electrically controlled in multiple ways to realize different digital logics. The DSIG-JLT is used to realize a 2 × 1 multiplexer and 1 × 2 demultiplexer by two different logic styles. The 2 × 1 multiplexer is implemented using four transistors, and the 1 × 2 demultiplexer is implemented using five transistors by NAND logic (logic style-1). Further, by using mixed logic, the 2 × 1 multiplexer is designed using three transistors, and the 1 × 2 demultiplexer using four transistors (logic style-2). A 4 × 1 multiplexer is also implemented using eight transistors. The propagation delay, rise time, and fall time of the 2 × 1 multiplexer (logic style-1) are calculated and are found to be 24.45 ps, 31 ps, and 8.2 ps, respectively, at a supply voltage (VDD) of 1 V. It is found that with a change in supply voltage from 0.7 to 1.0 V, the delay, rise time, and fall time decrease by 17.2%, 11.4%, and 65.69%, respectively. Simulations are carried using the ATLAS 3D device simulator in mixed mode.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
A semi-classical Floquet-NEGF approach to model photon-assisted tunneling in quantum well devices Investigating the potential of germanene in solar cells: a simulation study on a-SiGe/c-Si structure Effect of interlayer spacing on the electronic and optical properties of SnS2/graphene/SnS2 sandwich heterostructure: a density functional theory study Feasibility of a 9 THz HgTe/HgCdTe quantum-well vertical-cavity surface-emitting laser Enhancing the analysis of external quantum efficiency in OLEDs utilizing thin transport layer materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1