Ozgur Kara , Gokberk Yaylali , Ali Emre Pusane , Tuna Tugcu
{"title":"使用卷积神经网络的分子指数调制","authors":"Ozgur Kara , Gokberk Yaylali , Ali Emre Pusane , Tuna Tugcu","doi":"10.1016/j.nancom.2022.100420","DOIUrl":null,"url":null,"abstract":"<div><p><span>As the potential of molecular communication via diffusion (MCvD) systems at nano-scale communication increases, designing molecular schemes robust to the inevitable effects of molecular interference has become of vital importance. There are numerous molecular approaches in literature aiming to mitigate the effects of interference, namely inter-symbol interference. Moreover, for molecular multiple-input–multiple-output systems, interference among antennas, namely inter-link interference, becomes of significance. Inspired by the state-of-the-art performances of machine learning algorithms on making decisions, we propose a novel approach of a </span>convolutional neural network<span> (CNN)-based architecture. The proposed approach is for a uniquely-designed molecular multiple-input–single-output topology in order to alleviate the damaging effects of molecular interference. In this study, we compare the performance of the proposed network with that of an index modulation<span> approach and a symbol-by-symbol maximum likelihood estimation and show that the proposed method yields better performance.</span></span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"34 ","pages":"Article 100420"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular index modulation using convolutional neural networks\",\"authors\":\"Ozgur Kara , Gokberk Yaylali , Ali Emre Pusane , Tuna Tugcu\",\"doi\":\"10.1016/j.nancom.2022.100420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>As the potential of molecular communication via diffusion (MCvD) systems at nano-scale communication increases, designing molecular schemes robust to the inevitable effects of molecular interference has become of vital importance. There are numerous molecular approaches in literature aiming to mitigate the effects of interference, namely inter-symbol interference. Moreover, for molecular multiple-input–multiple-output systems, interference among antennas, namely inter-link interference, becomes of significance. Inspired by the state-of-the-art performances of machine learning algorithms on making decisions, we propose a novel approach of a </span>convolutional neural network<span> (CNN)-based architecture. The proposed approach is for a uniquely-designed molecular multiple-input–single-output topology in order to alleviate the damaging effects of molecular interference. In this study, we compare the performance of the proposed network with that of an index modulation<span> approach and a symbol-by-symbol maximum likelihood estimation and show that the proposed method yields better performance.</span></span></p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"34 \",\"pages\":\"Article 100420\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778922000230\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778922000230","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Molecular index modulation using convolutional neural networks
As the potential of molecular communication via diffusion (MCvD) systems at nano-scale communication increases, designing molecular schemes robust to the inevitable effects of molecular interference has become of vital importance. There are numerous molecular approaches in literature aiming to mitigate the effects of interference, namely inter-symbol interference. Moreover, for molecular multiple-input–multiple-output systems, interference among antennas, namely inter-link interference, becomes of significance. Inspired by the state-of-the-art performances of machine learning algorithms on making decisions, we propose a novel approach of a convolutional neural network (CNN)-based architecture. The proposed approach is for a uniquely-designed molecular multiple-input–single-output topology in order to alleviate the damaging effects of molecular interference. In this study, we compare the performance of the proposed network with that of an index modulation approach and a symbol-by-symbol maximum likelihood estimation and show that the proposed method yields better performance.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.