{"title":"受Metasurface启发的用于纳米通信的宽带高隔离THz-MIMO天线,包括6G应用和液体传感器","authors":"Gaurav Saxena , Sanjay Chintakindi , Mohsin Ahmed Kasim , Praveen Kumar Maduri , Y.K. Awasthi , Sanjay Kumar , Sahil Kansal , Rishabh Jain , Manish Kumar Sharma , Charul Dewan","doi":"10.1016/j.nancom.2022.100421","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, a circular-shaped microstrip feed wideband THz antenna with a small dimension of 480 × 480 </span><span><math><mo>×</mo></math></span> <span><math><mrow><mn>150</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>3</sup><span><span> is presented on a gold-plated diffused quartz substrate with a relative permittivity<span><span><span> of 3.50. It has an impedance operational bandwidth of 0.51-1.46 THz (80.76%) with a peak gain of 10.16 dBi. Throughout the desired bandwidth, radiation efficiency is more than 70%. This single-element antenna is transformed into a two-element MIMO antenna using a butterfly-shaped decoupling structure that included an </span>electromagnetic coupling structure and a </span>metasurface<span><span> absorber to increase isolation and diversity characteristics along with impedance bandwidth 0.4-2.0 THz. Return loss, gain, radiation efficiency, co-cross E and H-polarization, electric field, magnetic field, current density, </span>SAR, and diversity parameters such as Envelope Correlation Coefficient (ECC), Directive Gain (DG), Total Active </span></span></span>Reflection Coefficient (TARC), and Channel Capacity Loss (CCL) are all within acceptable limits for Nano wireless applications. The proposed wideband THz MIMO antenna can also be used as a sensor to measure the proportion of crystallized sugar (C</span><sub>12</sub>H<sub>22</sub>O<sub>11</sub><span>) and salt (NaCl) in water. The fields in which this antenna has applications include 6G, imaging, 3D printing, THz-wave radar, healthcare, liquid sensors with excellent sensitivity, and astronomy radiometric.</span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"34 ","pages":"Article 100421"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Metasurface inspired wideband high isolation THz MIMO antenna for nano communication including 6G applications and liquid sensors\",\"authors\":\"Gaurav Saxena , Sanjay Chintakindi , Mohsin Ahmed Kasim , Praveen Kumar Maduri , Y.K. Awasthi , Sanjay Kumar , Sahil Kansal , Rishabh Jain , Manish Kumar Sharma , Charul Dewan\",\"doi\":\"10.1016/j.nancom.2022.100421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, a circular-shaped microstrip feed wideband THz antenna with a small dimension of 480 × 480 </span><span><math><mo>×</mo></math></span> <span><math><mrow><mn>150</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>3</sup><span><span> is presented on a gold-plated diffused quartz substrate with a relative permittivity<span><span><span> of 3.50. It has an impedance operational bandwidth of 0.51-1.46 THz (80.76%) with a peak gain of 10.16 dBi. Throughout the desired bandwidth, radiation efficiency is more than 70%. This single-element antenna is transformed into a two-element MIMO antenna using a butterfly-shaped decoupling structure that included an </span>electromagnetic coupling structure and a </span>metasurface<span><span> absorber to increase isolation and diversity characteristics along with impedance bandwidth 0.4-2.0 THz. Return loss, gain, radiation efficiency, co-cross E and H-polarization, electric field, magnetic field, current density, </span>SAR, and diversity parameters such as Envelope Correlation Coefficient (ECC), Directive Gain (DG), Total Active </span></span></span>Reflection Coefficient (TARC), and Channel Capacity Loss (CCL) are all within acceptable limits for Nano wireless applications. The proposed wideband THz MIMO antenna can also be used as a sensor to measure the proportion of crystallized sugar (C</span><sub>12</sub>H<sub>22</sub>O<sub>11</sub><span>) and salt (NaCl) in water. The fields in which this antenna has applications include 6G, imaging, 3D printing, THz-wave radar, healthcare, liquid sensors with excellent sensitivity, and astronomy radiometric.</span></p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"34 \",\"pages\":\"Article 100421\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778922000242\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778922000242","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Metasurface inspired wideband high isolation THz MIMO antenna for nano communication including 6G applications and liquid sensors
In this paper, a circular-shaped microstrip feed wideband THz antenna with a small dimension of 480 × 480 3 is presented on a gold-plated diffused quartz substrate with a relative permittivity of 3.50. It has an impedance operational bandwidth of 0.51-1.46 THz (80.76%) with a peak gain of 10.16 dBi. Throughout the desired bandwidth, radiation efficiency is more than 70%. This single-element antenna is transformed into a two-element MIMO antenna using a butterfly-shaped decoupling structure that included an electromagnetic coupling structure and a metasurface absorber to increase isolation and diversity characteristics along with impedance bandwidth 0.4-2.0 THz. Return loss, gain, radiation efficiency, co-cross E and H-polarization, electric field, magnetic field, current density, SAR, and diversity parameters such as Envelope Correlation Coefficient (ECC), Directive Gain (DG), Total Active Reflection Coefficient (TARC), and Channel Capacity Loss (CCL) are all within acceptable limits for Nano wireless applications. The proposed wideband THz MIMO antenna can also be used as a sensor to measure the proportion of crystallized sugar (C12H22O11) and salt (NaCl) in water. The fields in which this antenna has applications include 6G, imaging, 3D printing, THz-wave radar, healthcare, liquid sensors with excellent sensitivity, and astronomy radiometric.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.