用一个变形几何序列完整地描述了大块成形中的断裂成形极限

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-07-10 DOI:10.1177/03093247231187015
Rui F. V. Sampaio, João P. M. Pragana, I. Bragança, Carlos MA Silva, Paulo A. F. Martins
{"title":"用一个变形几何序列完整地描述了大块成形中的断裂成形极限","authors":"Rui F. V. Sampaio, João P. M. Pragana, I. Bragança, Carlos MA Silva, Paulo A. F. Martins","doi":"10.1177/03093247231187015","DOIUrl":null,"url":null,"abstract":"This paper presents an upset geometry sequence to determine the fracture forming limits in a wide variety of strain loading paths ranging from uniaxial compression to equibiaxial tension. The strains at fracture in principal strain space are obtained by combination of digital image correlation and experimental evolutions of the compression force versus time, and their representation in the effective strain versus stress triaxiality space is accomplished by means of a new analytical framework that uses the instantaneous slope of the strain loading paths. Modeling of the experimental strains at fracture by means of an uncoupled ductile fracture criterion built upon combination of the Cockcroft-Latham and McClintock criteria and fractography analysis using a scanning electron microscope allow understanding and characterizing the crack opening modes by shear and tension as well as the uncertainty region inside which mixed crack opening modes are observed. Results confirm that the overall philosophy and objectives underlying the new upset geometry sequence for determining the fracture forming limits in bulk forming resemble those of the Nakajima test that is commonly used in sheet forming.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A complete characterization of THE fracture forming limits in bulk forming by means of an upset geometry sequence\",\"authors\":\"Rui F. V. Sampaio, João P. M. Pragana, I. Bragança, Carlos MA Silva, Paulo A. F. Martins\",\"doi\":\"10.1177/03093247231187015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an upset geometry sequence to determine the fracture forming limits in a wide variety of strain loading paths ranging from uniaxial compression to equibiaxial tension. The strains at fracture in principal strain space are obtained by combination of digital image correlation and experimental evolutions of the compression force versus time, and their representation in the effective strain versus stress triaxiality space is accomplished by means of a new analytical framework that uses the instantaneous slope of the strain loading paths. Modeling of the experimental strains at fracture by means of an uncoupled ductile fracture criterion built upon combination of the Cockcroft-Latham and McClintock criteria and fractography analysis using a scanning electron microscope allow understanding and characterizing the crack opening modes by shear and tension as well as the uncertainty region inside which mixed crack opening modes are observed. Results confirm that the overall philosophy and objectives underlying the new upset geometry sequence for determining the fracture forming limits in bulk forming resemble those of the Nakajima test that is commonly used in sheet forming.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247231187015\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231187015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了在从单轴压缩到等双轴拉伸的各种应变加载路径下,确定断裂形成极限的打乱几何序列。结合数字图像相关和压缩力随时间的实验演化,得到主应变空间中的断裂应变,并利用应变加载路径的瞬时斜率实现有效应变-应力三轴空间中断裂应变的表示。通过结合Cockcroft-Latham准则和McClintock准则建立的非耦合韧性断裂准则对断裂时的实验应变进行建模,并使用扫描电镜进行断口分析,可以理解和表征剪切和拉伸的裂纹张开模式,以及观察到混合裂纹张开模式的不确定区域。结果证实,用于确定大块成形中断裂成形极限的新打乱几何序列的总体理念和目标类似于板材成形中常用的中岛试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A complete characterization of THE fracture forming limits in bulk forming by means of an upset geometry sequence
This paper presents an upset geometry sequence to determine the fracture forming limits in a wide variety of strain loading paths ranging from uniaxial compression to equibiaxial tension. The strains at fracture in principal strain space are obtained by combination of digital image correlation and experimental evolutions of the compression force versus time, and their representation in the effective strain versus stress triaxiality space is accomplished by means of a new analytical framework that uses the instantaneous slope of the strain loading paths. Modeling of the experimental strains at fracture by means of an uncoupled ductile fracture criterion built upon combination of the Cockcroft-Latham and McClintock criteria and fractography analysis using a scanning electron microscope allow understanding and characterizing the crack opening modes by shear and tension as well as the uncertainty region inside which mixed crack opening modes are observed. Results confirm that the overall philosophy and objectives underlying the new upset geometry sequence for determining the fracture forming limits in bulk forming resemble those of the Nakajima test that is commonly used in sheet forming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1