双层轻质防火PU泡沫基隔音复合材料

IF 1.3 4区 医学 Q3 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Noise & Health Pub Date : 2023-05-25 DOI:10.3397/nc_2023_0132
Navin Banka, Debasish Chatterjee
{"title":"双层轻质防火PU泡沫基隔音复合材料","authors":"Navin Banka, Debasish Chatterjee","doi":"10.3397/nc_2023_0132","DOIUrl":null,"url":null,"abstract":"In today's automotive industry, sound package design and optimization is important considering the mounting need for weight reduction and achieving targeted sound absorption and sound transmission loss values. The present paper relates to dual layered light weight (LW) fire resistant\n (FR) Polyurethane (PU) foam-based composite for engine room insulation, referred herein as Ωµ2 foam comprising of two layers of foam having different densities and flexibility. The composite consists of one layer of semirigid FR PU foam acting as a carrier with sound absorptive property\n and another layer consisting of flexible FR PU foam acting as higher acoustical absorptive property. This concept is intended for enhancement of acoustical performance by the synergistic effect of dual foam layers besides being FR and LW material, specially designed for passenger vehicles'\n engine compartment insulations such as firewall/dash panel, bonnet/hood liner insulation and other diverse applications in commercial vehicles. The paper presents material properties and in-depth comparative assessment of sound absorption properties of dual layer (Ωµ2) LW FR PU foam\n with respect to conventional materials like single layer light weight semi-rigid PU foam and resinated cotton shoddy felt, etc.","PeriodicalId":19195,"journal":{"name":"Noise & Health","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual layered light weight fire resistant PU foam-based composite for acoustical insulation\",\"authors\":\"Navin Banka, Debasish Chatterjee\",\"doi\":\"10.3397/nc_2023_0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's automotive industry, sound package design and optimization is important considering the mounting need for weight reduction and achieving targeted sound absorption and sound transmission loss values. The present paper relates to dual layered light weight (LW) fire resistant\\n (FR) Polyurethane (PU) foam-based composite for engine room insulation, referred herein as Ωµ2 foam comprising of two layers of foam having different densities and flexibility. The composite consists of one layer of semirigid FR PU foam acting as a carrier with sound absorptive property\\n and another layer consisting of flexible FR PU foam acting as higher acoustical absorptive property. This concept is intended for enhancement of acoustical performance by the synergistic effect of dual foam layers besides being FR and LW material, specially designed for passenger vehicles'\\n engine compartment insulations such as firewall/dash panel, bonnet/hood liner insulation and other diverse applications in commercial vehicles. The paper presents material properties and in-depth comparative assessment of sound absorption properties of dual layer (Ωµ2) LW FR PU foam\\n with respect to conventional materials like single layer light weight semi-rigid PU foam and resinated cotton shoddy felt, etc.\",\"PeriodicalId\":19195,\"journal\":{\"name\":\"Noise & Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise & Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3397/nc_2023_0132\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise & Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3397/nc_2023_0132","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在当今的汽车工业中,考虑到不断增加的减重需求以及实现目标吸声和传声损失值,声封装设计和优化非常重要。本论文涉及用于机舱隔热的双层轻质(LW)耐火(FR)聚氨酯(PU)泡沫基复合材料,此处称为Ωµ2泡沫,由两层具有不同密度和柔韧性的泡沫组成。该复合材料由一层半刚性FR PU泡沫作为具有吸声性能的载体和另一层柔性FR PU泡沫作为具有较高吸声性能的载体组成。除了FR和LW材料外,这一概念旨在通过双泡沫层的协同效应来增强声学性能,专门为乘用车的发动机舱隔热设计,如防火墙/仪表板,发动机罩/发动机罩内衬隔热以及商用车的其他各种应用。本文介绍了材料性能,并对双层(Ωµ2)LW FR PU泡沫与单层轻质半刚性PU泡沫、树脂棉劣质毡等常规材料的吸声性能进行了深入的对比评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual layered light weight fire resistant PU foam-based composite for acoustical insulation
In today's automotive industry, sound package design and optimization is important considering the mounting need for weight reduction and achieving targeted sound absorption and sound transmission loss values. The present paper relates to dual layered light weight (LW) fire resistant (FR) Polyurethane (PU) foam-based composite for engine room insulation, referred herein as Ωµ2 foam comprising of two layers of foam having different densities and flexibility. The composite consists of one layer of semirigid FR PU foam acting as a carrier with sound absorptive property and another layer consisting of flexible FR PU foam acting as higher acoustical absorptive property. This concept is intended for enhancement of acoustical performance by the synergistic effect of dual foam layers besides being FR and LW material, specially designed for passenger vehicles' engine compartment insulations such as firewall/dash panel, bonnet/hood liner insulation and other diverse applications in commercial vehicles. The paper presents material properties and in-depth comparative assessment of sound absorption properties of dual layer (Ωµ2) LW FR PU foam with respect to conventional materials like single layer light weight semi-rigid PU foam and resinated cotton shoddy felt, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Noise & Health
Noise & Health AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
CiteScore
2.10
自引率
14.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: Noise and Health is the only International Journal devoted to research on all aspects of noise and its effects on human health. An inter-disciplinary journal for all professions concerned with auditory and non-auditory effects of occupational, environmental, and leisure noise. It aims to provide a forum for presentation of novel research material on a broad range of topics associated with noise pollution, its control and its detrimental effects on hearing and health. It will cover issues from basic experimental science through clinical evaluation and management, technical aspects of noise reduction systems and solutions to environmental issues relating to social and public health policy.
期刊最新文献
A Simplified Version of the Chinese Tinnitus Disorder Scale and its Psychometric Characteristics. Analysis of Therapeutic Options for Noise-Induced Hearing Loss: Retroauricular Injection of Methylprednisolone Sodium Succinate Combined with Hyperbaric Oxygenation. Application of Mozart's Sonata for Two Pianos in D Major in Children with Epilepsy and Effect of Acoustic Quality on Epileptic Discharges. Application of Music Therapy in Improving Sleep Quality and Psychological Health of Pregnant Women with Hypertension: A Retrospective Study. Application of Music Therapy in Improving the Sleep Quality and Mental Health of Nurses with Circadian Rhythm Sleep Disorders Caused by Work Shifts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1