应用循环和卷积神经网络的技术声音事件分类

Constantin Rieder, M. Germann, Samuel Mezger, K. Scherer
{"title":"应用循环和卷积神经网络的技术声音事件分类","authors":"Constantin Rieder, M. Germann, Samuel Mezger, K. Scherer","doi":"10.5220/0009874400840088","DOIUrl":null,"url":null,"abstract":": In many intelligent technical assistance systems (especially diagnostics), the sound classification is a significant and useful input for intelligent diagnostics. A high performance classification of the heterogeneous sounds of any mechanical components can support the diagnostic experts with a lot of information. Classical pattern recognition methods fail because of the complex features and the heterogeneous state noise. Because of no explicit human knowledge about the characteristic representation of the classes, classical feature generation is impossible. A new approach by generation of a concept for neural networks and realization by especially convolutional networks shows the power of technical sound classification methods. After the concept finding a parametrized network model is devised and realized. First results show the power of the RNNs and CNNs. Dependent on the parametrized configuration of the net architecture and the training sets an enhancement of the sound event classification is possible.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"49 1","pages":"84-88"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Sound Event Classification Applying Recurrent and Convolutional Neural Networks\",\"authors\":\"Constantin Rieder, M. Germann, Samuel Mezger, K. Scherer\",\"doi\":\"10.5220/0009874400840088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In many intelligent technical assistance systems (especially diagnostics), the sound classification is a significant and useful input for intelligent diagnostics. A high performance classification of the heterogeneous sounds of any mechanical components can support the diagnostic experts with a lot of information. Classical pattern recognition methods fail because of the complex features and the heterogeneous state noise. Because of no explicit human knowledge about the characteristic representation of the classes, classical feature generation is impossible. A new approach by generation of a concept for neural networks and realization by especially convolutional networks shows the power of technical sound classification methods. After the concept finding a parametrized network model is devised and realized. First results show the power of the RNNs and CNNs. Dependent on the parametrized configuration of the net architecture and the training sets an enhancement of the sound event classification is possible.\",\"PeriodicalId\":88612,\"journal\":{\"name\":\"News. Phi Delta Epsilon\",\"volume\":\"49 1\",\"pages\":\"84-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News. Phi Delta Epsilon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0009874400840088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009874400840088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多智能技术辅助系统(特别是诊断)中,声音分类是智能诊断的重要而有用的输入。对任何机械部件的异质声音进行高性能分类,可以为诊断专家提供大量信息。传统的模式识别方法由于其复杂的特征和异构的状态噪声而失败。由于人类对类的特征表示没有明确的认识,经典的特征生成是不可能的。通过神经网络概念的生成和卷积网络实现的新方法显示了技术声音分类方法的力量。在此基础上,设计并实现了参数化网络模型。第一个结果显示了rnn和cnn的力量。依赖于网络结构的参数化配置和训练集,声音事件分类的增强是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technical Sound Event Classification Applying Recurrent and Convolutional Neural Networks
: In many intelligent technical assistance systems (especially diagnostics), the sound classification is a significant and useful input for intelligent diagnostics. A high performance classification of the heterogeneous sounds of any mechanical components can support the diagnostic experts with a lot of information. Classical pattern recognition methods fail because of the complex features and the heterogeneous state noise. Because of no explicit human knowledge about the characteristic representation of the classes, classical feature generation is impossible. A new approach by generation of a concept for neural networks and realization by especially convolutional networks shows the power of technical sound classification methods. After the concept finding a parametrized network model is devised and realized. First results show the power of the RNNs and CNNs. Dependent on the parametrized configuration of the net architecture and the training sets an enhancement of the sound event classification is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAN-Based LiDAR Intensity Simulation Improving Primate Sounds Classification using Binary Presorting for Deep Learning Towards exploring adversarial learning for anomaly detection in complex driving scenes A Study of Neural Collapse for Text Classification Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1