{"title":"电子束产生的空气等离子体:臭氧和电子密度测量","authors":"R. Vidmar, K. Stalder","doi":"10.1109/PLASMA.2008.4590950","DOIUrl":null,"url":null,"abstract":"A 100-keV electron beam is used to ionize air within a test cell in which the pressure is varied from 1 mT to 600 T. In these experiments, the electron beam is operated with a single pulse of 10 -ms duration at a current of 5.6 mA. The beam in injected into the tank through a 12.7-mum aluminum foil window that separates the electron source from the test cell. Byproducts of volumetric ionization and dissociation include plasma electrons, ozone produced by the rapid reaction of atomic oxygen with oxygen in the air, and excitation of the N2 Second Positive line at 337.1 nm. The N2 emissions were observed 2 cm from the foil window using a fiber optic system. Ozone was detected by optical absorption at 255 nm and electrons were detected by an rf phase measurement system operating at 10 GHz. The ozone and rf measurements were made on the test-cell midplane, 25 cm from the foil window. An air chemistry code1 is used to estimate ozone production and rf phase shift as a function of volumetric ionization rate which was subsequently compared with the experimental data. These measurements are discussed as well as an estimate of the power required to generate and sustain the plasma density.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron-beam generated air plasma: Ozone and electron density measurements\",\"authors\":\"R. Vidmar, K. Stalder\",\"doi\":\"10.1109/PLASMA.2008.4590950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 100-keV electron beam is used to ionize air within a test cell in which the pressure is varied from 1 mT to 600 T. In these experiments, the electron beam is operated with a single pulse of 10 -ms duration at a current of 5.6 mA. The beam in injected into the tank through a 12.7-mum aluminum foil window that separates the electron source from the test cell. Byproducts of volumetric ionization and dissociation include plasma electrons, ozone produced by the rapid reaction of atomic oxygen with oxygen in the air, and excitation of the N2 Second Positive line at 337.1 nm. The N2 emissions were observed 2 cm from the foil window using a fiber optic system. Ozone was detected by optical absorption at 255 nm and electrons were detected by an rf phase measurement system operating at 10 GHz. The ozone and rf measurements were made on the test-cell midplane, 25 cm from the foil window. An air chemistry code1 is used to estimate ozone production and rf phase shift as a function of volumetric ionization rate which was subsequently compared with the experimental data. These measurements are discussed as well as an estimate of the power required to generate and sustain the plasma density.\",\"PeriodicalId\":6359,\"journal\":{\"name\":\"2008 IEEE 35th International Conference on Plasma Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 35th International Conference on Plasma Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2008.4590950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2008.4590950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这些实验中,电子束在5.6毫安的电流下以10毫秒持续时间的单脉冲操作,电子束被用于电离压力从1毫安到600毫安的测试单元内的空气。电子束通过一个12.7微米的铝箔窗注入罐中,该窗将电子源与测试单元分开。体积电离和解离的副产物包括等离子体电子、原子氧与空气中的氧快速反应产生的臭氧以及在337.1 nm处激发N2 Second Positive线。利用光纤系统在距箔窗2cm处观察N2发射。采用255 nm光吸收检测臭氧,10 GHz射频相位测量系统检测电子。臭氧和射频测量是在测试电池背板上进行的,距离箔窗25厘米。使用空气化学代码1来估计臭氧产生和射频相移作为体积电离率的函数,随后将其与实验数据进行比较。讨论了这些测量以及产生和维持等离子体密度所需功率的估计。
Electron-beam generated air plasma: Ozone and electron density measurements
A 100-keV electron beam is used to ionize air within a test cell in which the pressure is varied from 1 mT to 600 T. In these experiments, the electron beam is operated with a single pulse of 10 -ms duration at a current of 5.6 mA. The beam in injected into the tank through a 12.7-mum aluminum foil window that separates the electron source from the test cell. Byproducts of volumetric ionization and dissociation include plasma electrons, ozone produced by the rapid reaction of atomic oxygen with oxygen in the air, and excitation of the N2 Second Positive line at 337.1 nm. The N2 emissions were observed 2 cm from the foil window using a fiber optic system. Ozone was detected by optical absorption at 255 nm and electrons were detected by an rf phase measurement system operating at 10 GHz. The ozone and rf measurements were made on the test-cell midplane, 25 cm from the foil window. An air chemistry code1 is used to estimate ozone production and rf phase shift as a function of volumetric ionization rate which was subsequently compared with the experimental data. These measurements are discussed as well as an estimate of the power required to generate and sustain the plasma density.