利用大量地球化学数据对烃源岩样品进行化学计量学强化分类:波斯湾南部盆地

M. Alipour, B. Alizadeh, S. Ramos, B. Khani, S. Mirzaie
{"title":"利用大量地球化学数据对烃源岩样品进行化学计量学强化分类:波斯湾南部盆地","authors":"M. Alipour, B. Alizadeh, S. Ramos, B. Khani, S. Mirzaie","doi":"10.22050/IJOGST.2019.142950.1469","DOIUrl":null,"url":null,"abstract":"Chemometric methods can enhance geochemical interpretations, especially when working with large datasets. With this aim, exploratory hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods are used herein to study the bulk pyrolysis parameters of 534 samples from the Persian Gulf basin. These methods are powerful techniques for identifying the patterns of variations in multivariate datasets and reducing their dimensionality. By adopting a “divide-and-conquer” approach, the existing dataset could be separated into sample groupings at family and subfamily levels. The geochemical characteristics of each category were defined based on loadings and scores plots. This procedure greatly assisted the identification of key source rock levels in the stratigraphic column of the study area and highlighted the future research needs for source rock analysis in the Persian Gulf basin.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"72 5 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chemometrics-enhanced Classification of Source Rock Samples Using their Bulk Geochemical Data: Southern Persian Gulf Basin\",\"authors\":\"M. Alipour, B. Alizadeh, S. Ramos, B. Khani, S. Mirzaie\",\"doi\":\"10.22050/IJOGST.2019.142950.1469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemometric methods can enhance geochemical interpretations, especially when working with large datasets. With this aim, exploratory hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods are used herein to study the bulk pyrolysis parameters of 534 samples from the Persian Gulf basin. These methods are powerful techniques for identifying the patterns of variations in multivariate datasets and reducing their dimensionality. By adopting a “divide-and-conquer” approach, the existing dataset could be separated into sample groupings at family and subfamily levels. The geochemical characteristics of each category were defined based on loadings and scores plots. This procedure greatly assisted the identification of key source rock levels in the stratigraphic column of the study area and highlighted the future research needs for source rock analysis in the Persian Gulf basin.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"72 5 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2019.142950.1469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2019.142950.1469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

化学计量学方法可以增强地球化学解释,特别是在处理大型数据集时。为此,本文采用探索性层次聚类分析(HCA)和主成分分析(PCA)方法对波斯湾盆地534份样品的整体热解参数进行了研究。这些方法是识别多变量数据集的变化模式并降低其维数的强大技术。通过采用“分而治之”的方法,现有的数据集可以在科和亚科水平上被分成样本组。根据载荷图和分数图确定了各类型的地球化学特征。该方法为研究区地层柱中关键烃源岩层位的确定提供了重要帮助,突出了未来波斯湾盆地烃源岩分析的研究需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemometrics-enhanced Classification of Source Rock Samples Using their Bulk Geochemical Data: Southern Persian Gulf Basin
Chemometric methods can enhance geochemical interpretations, especially when working with large datasets. With this aim, exploratory hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods are used herein to study the bulk pyrolysis parameters of 534 samples from the Persian Gulf basin. These methods are powerful techniques for identifying the patterns of variations in multivariate datasets and reducing their dimensionality. By adopting a “divide-and-conquer” approach, the existing dataset could be separated into sample groupings at family and subfamily levels. The geochemical characteristics of each category were defined based on loadings and scores plots. This procedure greatly assisted the identification of key source rock levels in the stratigraphic column of the study area and highlighted the future research needs for source rock analysis in the Persian Gulf basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relation between asphaltene adsorption on the nanoparticles surface and asphaltene precipitation inhibition during real crude oil natural depletion tests Evaluation of a novel mechanistic approach to predict transport of water and ions through shale Investigation of origin, sedimentary environment and preservation of organic matter: A case study in Garau Formation Detection of heavy bitumen contaminations with using corrected Rock-Eval pyrolysis data Geochemical Investigation of Trace Metals in Crude Oils from Some Producing Oil Fields in Niger Delta, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1