Jong Seok Park, T. Chi, Amy Su, Chengjie Zhu, J. H. Sung, H. Cho, Mark P. Styczynski, Hua Wang
{"title":"一种具有1024像素的高密度CMOS多模态关节传感器/刺激器阵列,用于整体实时细胞表征","authors":"Jong Seok Park, T. Chi, Amy Su, Chengjie Zhu, J. H. Sung, H. Cho, Mark P. Styczynski, Hua Wang","doi":"10.1109/VLSIC.2016.7573469","DOIUrl":null,"url":null,"abstract":"This paper presents a fully integrated 1024-pixel world-first joint multi-modality sensor/stimulator array in CMOS for holistic real-time cell characterization. Each pixel supports extracellular voltage recording, optical detection, and cellular impedance measurement, as well as current-mode cellular stimulation. Four independent on-chip temperature sensors monitor the ambient temperature variation. The chip is implemented in a 130nm CMOS process with a pixel size of 58μm×58μm, achieving the largest array-size and smallest pixel for a multi-modality joint sensor/stimulator array in CMOS. The electrical and biological measurements demonstrate the utility of this high-density multi-modality array in cell-based assays for drug and chemical screening.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"289 2 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A high-density CMOS multi-modality joint sensor/stimulator array with 1024 pixels for holistic real-time cellular characterization\",\"authors\":\"Jong Seok Park, T. Chi, Amy Su, Chengjie Zhu, J. H. Sung, H. Cho, Mark P. Styczynski, Hua Wang\",\"doi\":\"10.1109/VLSIC.2016.7573469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fully integrated 1024-pixel world-first joint multi-modality sensor/stimulator array in CMOS for holistic real-time cell characterization. Each pixel supports extracellular voltage recording, optical detection, and cellular impedance measurement, as well as current-mode cellular stimulation. Four independent on-chip temperature sensors monitor the ambient temperature variation. The chip is implemented in a 130nm CMOS process with a pixel size of 58μm×58μm, achieving the largest array-size and smallest pixel for a multi-modality joint sensor/stimulator array in CMOS. The electrical and biological measurements demonstrate the utility of this high-density multi-modality array in cell-based assays for drug and chemical screening.\",\"PeriodicalId\":6512,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"volume\":\"289 2 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2016.7573469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high-density CMOS multi-modality joint sensor/stimulator array with 1024 pixels for holistic real-time cellular characterization
This paper presents a fully integrated 1024-pixel world-first joint multi-modality sensor/stimulator array in CMOS for holistic real-time cell characterization. Each pixel supports extracellular voltage recording, optical detection, and cellular impedance measurement, as well as current-mode cellular stimulation. Four independent on-chip temperature sensors monitor the ambient temperature variation. The chip is implemented in a 130nm CMOS process with a pixel size of 58μm×58μm, achieving the largest array-size and smallest pixel for a multi-modality joint sensor/stimulator array in CMOS. The electrical and biological measurements demonstrate the utility of this high-density multi-modality array in cell-based assays for drug and chemical screening.