X. Yuan, S. Kim, J. Juyon, M. D'Urbino, Torsten Bullmann, Yihui Chen, A. Stettler, A. Hierlemann, U. Frey
{"title":"具有8,640个电极的微电极阵列,可同时以6.5 kfps的速度读出全帧,并以20 kS/s的速度读出112通道开关矩阵","authors":"X. Yuan, S. Kim, J. Juyon, M. D'Urbino, Torsten Bullmann, Yihui Chen, A. Stettler, A. Hierlemann, U. Frey","doi":"10.1109/VLSIC.2016.7573558","DOIUrl":null,"url":null,"abstract":"CMOS microelectrode arrays allow for recording from neurons at thousands of sites. Here, we introduce the concept of a `dual-mode operation' microelectrode array, leveraging the advantages of full-frame scanning and switch-matrix array architectures into a single device. The chip was fabricated in 0.18 μm CMOS technology. Measured noise levels were 11.1 μVrms for full-frame scanning and 1.6 μVrms for switch-matrix mode at 3.3 μW and 38.1 μW per channel power consumption. Recordings of electrical activity from cultured neurons have been successfully conducted.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"30 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A microelectrode array with 8,640 electrodes enabling simultaneous full-frame readout at 6.5 kfps and 112-channel switch-matrix readout at 20 kS/s\",\"authors\":\"X. Yuan, S. Kim, J. Juyon, M. D'Urbino, Torsten Bullmann, Yihui Chen, A. Stettler, A. Hierlemann, U. Frey\",\"doi\":\"10.1109/VLSIC.2016.7573558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CMOS microelectrode arrays allow for recording from neurons at thousands of sites. Here, we introduce the concept of a `dual-mode operation' microelectrode array, leveraging the advantages of full-frame scanning and switch-matrix array architectures into a single device. The chip was fabricated in 0.18 μm CMOS technology. Measured noise levels were 11.1 μVrms for full-frame scanning and 1.6 μVrms for switch-matrix mode at 3.3 μW and 38.1 μW per channel power consumption. Recordings of electrical activity from cultured neurons have been successfully conducted.\",\"PeriodicalId\":6512,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"volume\":\"30 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2016.7573558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A microelectrode array with 8,640 electrodes enabling simultaneous full-frame readout at 6.5 kfps and 112-channel switch-matrix readout at 20 kS/s
CMOS microelectrode arrays allow for recording from neurons at thousands of sites. Here, we introduce the concept of a `dual-mode operation' microelectrode array, leveraging the advantages of full-frame scanning and switch-matrix array architectures into a single device. The chip was fabricated in 0.18 μm CMOS technology. Measured noise levels were 11.1 μVrms for full-frame scanning and 1.6 μVrms for switch-matrix mode at 3.3 μW and 38.1 μW per channel power consumption. Recordings of electrical activity from cultured neurons have been successfully conducted.