台风地区高墩钢管格构支撑体系动力特性分析

Shijie Wang, Quansheng Sun, Hong-Wei Gao, H. Xia
{"title":"台风地区高墩钢管格构支撑体系动力特性分析","authors":"Shijie Wang, Quansheng Sun, Hong-Wei Gao, H. Xia","doi":"10.11648/J.AJCE.20200802.12","DOIUrl":null,"url":null,"abstract":"According to similar criteria, the on-site lattice support on-site in the typhoon area is 62m high and scaled down at 1: 150 to produce an aeroelastic scaled model of the lattice support. Based on the specifications and the characteristics of the wind field in the area where the project is located, a type A landform is used for wind tunnel tests. Through the measured structural dynamic characteristics combined with the help of the finite element analysis software Ansys, the dynamic characteristics of the lattice support under typhoon wind field were studied. The test results showed that under wind load, the lattice support itself is dominated by second-order low-frequency vibrations. The top end of the bracket is excited with a lower first-order frequency. The difference between the first-order and second-order natural frequencies is small. The support is about H / 3 height or more, which is greatly affected by wind load and speed, and is less affected below 30m; at each wind direction angle, the acceleration response of each measurement point of the support generally increases non-linearly with the increase of wind speed. The response of the measuring point shows a quadratic curve relationship with the wind speed. The acceleration of the measuring point gradually decreases from the top to the bottom. At the same wind speed, the closer to the top, the larger the acceleration. The positive change is more than H / 2, and the change period is unstable. Below 20m, the positive and negative acceleration changes relatively uniformly, the closer to the bottom, the smaller the acceleration period; the maximum value of the wind vibration response at each measurement point occurs under the wind angle of 0 ° and 90 °, the wind resistance generated by the box girder cross section has little effect on the support; at a wind angle of 45 °, the response value of the crosswind and windward wind vibration is similar, and the effect of the crosswind cannot be ignored.","PeriodicalId":7606,"journal":{"name":"American Journal of Civil Engineering","volume":"38 1","pages":"30"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Characteristics Analysis of High Pier Steel Pipe Lattice Support System in Typhoon Region\",\"authors\":\"Shijie Wang, Quansheng Sun, Hong-Wei Gao, H. Xia\",\"doi\":\"10.11648/J.AJCE.20200802.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to similar criteria, the on-site lattice support on-site in the typhoon area is 62m high and scaled down at 1: 150 to produce an aeroelastic scaled model of the lattice support. Based on the specifications and the characteristics of the wind field in the area where the project is located, a type A landform is used for wind tunnel tests. Through the measured structural dynamic characteristics combined with the help of the finite element analysis software Ansys, the dynamic characteristics of the lattice support under typhoon wind field were studied. The test results showed that under wind load, the lattice support itself is dominated by second-order low-frequency vibrations. The top end of the bracket is excited with a lower first-order frequency. The difference between the first-order and second-order natural frequencies is small. The support is about H / 3 height or more, which is greatly affected by wind load and speed, and is less affected below 30m; at each wind direction angle, the acceleration response of each measurement point of the support generally increases non-linearly with the increase of wind speed. The response of the measuring point shows a quadratic curve relationship with the wind speed. The acceleration of the measuring point gradually decreases from the top to the bottom. At the same wind speed, the closer to the top, the larger the acceleration. The positive change is more than H / 2, and the change period is unstable. Below 20m, the positive and negative acceleration changes relatively uniformly, the closer to the bottom, the smaller the acceleration period; the maximum value of the wind vibration response at each measurement point occurs under the wind angle of 0 ° and 90 °, the wind resistance generated by the box girder cross section has little effect on the support; at a wind angle of 45 °, the response value of the crosswind and windward wind vibration is similar, and the effect of the crosswind cannot be ignored.\",\"PeriodicalId\":7606,\"journal\":{\"name\":\"American Journal of Civil Engineering\",\"volume\":\"38 1\",\"pages\":\"30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJCE.20200802.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJCE.20200802.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据类似准则,台风区现场格架高度为62m,按1:15 0比例缩尺,得到格架气动弹性缩尺模型。根据项目所在地区风场的规格和特点,风洞试验选用a类地貌。通过实测结构动力特性,结合有限元分析软件Ansys,研究了台风风场作用下格构支撑的动力特性。试验结果表明,在风荷载作用下,格架本身以二阶低频振动为主。支架的上端以较低的一阶频率激励。一阶和二阶固有频率之间的差别很小。支撑高度在H / 3左右及以上,受风荷载和风速影响较大,30m以下受影响较小;在各风向角下,支架各测点的加速度响应一般随风速的增加呈非线性增加。测点的响应与风速呈二次曲线关系。测点加速度从上到下逐渐减小。在相同的风速下,越靠近顶部,加速度越大。正变化大于H / 2,且变化周期不稳定。20m以下,正负加速度变化相对均匀,越接近底部,加速度周期越小;各测点的风振响应最大值出现在风角为0°和90°时,箱梁截面产生的风阻对支座影响不大;在风角为45°时,侧风与迎风振动的响应值相近,侧风的影响不容忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Characteristics Analysis of High Pier Steel Pipe Lattice Support System in Typhoon Region
According to similar criteria, the on-site lattice support on-site in the typhoon area is 62m high and scaled down at 1: 150 to produce an aeroelastic scaled model of the lattice support. Based on the specifications and the characteristics of the wind field in the area where the project is located, a type A landform is used for wind tunnel tests. Through the measured structural dynamic characteristics combined with the help of the finite element analysis software Ansys, the dynamic characteristics of the lattice support under typhoon wind field were studied. The test results showed that under wind load, the lattice support itself is dominated by second-order low-frequency vibrations. The top end of the bracket is excited with a lower first-order frequency. The difference between the first-order and second-order natural frequencies is small. The support is about H / 3 height or more, which is greatly affected by wind load and speed, and is less affected below 30m; at each wind direction angle, the acceleration response of each measurement point of the support generally increases non-linearly with the increase of wind speed. The response of the measuring point shows a quadratic curve relationship with the wind speed. The acceleration of the measuring point gradually decreases from the top to the bottom. At the same wind speed, the closer to the top, the larger the acceleration. The positive change is more than H / 2, and the change period is unstable. Below 20m, the positive and negative acceleration changes relatively uniformly, the closer to the bottom, the smaller the acceleration period; the maximum value of the wind vibration response at each measurement point occurs under the wind angle of 0 ° and 90 °, the wind resistance generated by the box girder cross section has little effect on the support; at a wind angle of 45 °, the response value of the crosswind and windward wind vibration is similar, and the effect of the crosswind cannot be ignored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformance and Performance Evaluation of Land Use Plan of Yirba Town Performance of Simplified Damage-Based Concrete Models in Seismic Applications Pavement Service Life Prediction with PLAXIS 3D in Bangladesh Surface-Modified Nanoclays for Enhancing Resistance to Moisture Damage in Hot Mix Asphalt Structural Performance Evaluation of Diversion Weir Structure: Case Study of Basaka Small Scale Irrigation Scheme, Oromia, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1