S. Ujita, Y. Kinoshita, H. Umeda, T. Morita, K. Kaibara, S. Tamura, M. Ishida, T. Ueda
{"title":"完全集成的基于gan的功率IC,包括用于高效率DC-DC转换器的栅极驱动器","authors":"S. Ujita, Y. Kinoshita, H. Umeda, T. Morita, K. Kaibara, S. Tamura, M. Ishida, T. Ueda","doi":"10.1109/VLSIC.2016.7573496","DOIUrl":null,"url":null,"abstract":"In this paper, we present a state-of-the-art integrated GaN power IC capable of operating in a high frequency (MHz) regime. This realizes system size reduction, 60% maximum, of a power IC. The IC consists of two output power transistors (PT) and two gate drivers (GD). The key devices in the IC are normally-off gate injection transistors (GITs) for PT and GD and a normally-on hetero-junction field effect transistor (HFET) for GD. Novel local control of carrier concentration of an identical 2 dimensional electron gas (2DEG) at an AlGaN/GaN interface which made integration of the transistors with such a large threshold voltage difference possible is described. A specially developed post-passivation interconnection process giving low parasitic components is also described. The IC applied to a 12V-1.8V DC-DC converter shows high frequency switching operation well beyond the limit of Si pointing to future improvement in consumer electronics power supply systems.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"20 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A fully integrated GaN-based power IC including gate drivers for high-efficiency DC-DC Converters\",\"authors\":\"S. Ujita, Y. Kinoshita, H. Umeda, T. Morita, K. Kaibara, S. Tamura, M. Ishida, T. Ueda\",\"doi\":\"10.1109/VLSIC.2016.7573496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a state-of-the-art integrated GaN power IC capable of operating in a high frequency (MHz) regime. This realizes system size reduction, 60% maximum, of a power IC. The IC consists of two output power transistors (PT) and two gate drivers (GD). The key devices in the IC are normally-off gate injection transistors (GITs) for PT and GD and a normally-on hetero-junction field effect transistor (HFET) for GD. Novel local control of carrier concentration of an identical 2 dimensional electron gas (2DEG) at an AlGaN/GaN interface which made integration of the transistors with such a large threshold voltage difference possible is described. A specially developed post-passivation interconnection process giving low parasitic components is also described. The IC applied to a 12V-1.8V DC-DC converter shows high frequency switching operation well beyond the limit of Si pointing to future improvement in consumer electronics power supply systems.\",\"PeriodicalId\":6512,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"volume\":\"20 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2016.7573496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fully integrated GaN-based power IC including gate drivers for high-efficiency DC-DC Converters
In this paper, we present a state-of-the-art integrated GaN power IC capable of operating in a high frequency (MHz) regime. This realizes system size reduction, 60% maximum, of a power IC. The IC consists of two output power transistors (PT) and two gate drivers (GD). The key devices in the IC are normally-off gate injection transistors (GITs) for PT and GD and a normally-on hetero-junction field effect transistor (HFET) for GD. Novel local control of carrier concentration of an identical 2 dimensional electron gas (2DEG) at an AlGaN/GaN interface which made integration of the transistors with such a large threshold voltage difference possible is described. A specially developed post-passivation interconnection process giving low parasitic components is also described. The IC applied to a 12V-1.8V DC-DC converter shows high frequency switching operation well beyond the limit of Si pointing to future improvement in consumer electronics power supply systems.