基于深度学习模型的设备识别声学侧信道攻击

V. S. Adhin, Arunjo Maliekkal, K. Mukilan, K. Sanjay, R. Chitra, A. P. James
{"title":"基于深度学习模型的设备识别声学侧信道攻击","authors":"V. S. Adhin, Arunjo Maliekkal, K. Mukilan, K. Sanjay, R. Chitra, A. P. James","doi":"10.1109/MWSCAS47672.2021.9531738","DOIUrl":null,"url":null,"abstract":"Side-channel attacks are easy to execute and very hard to detect because of their passive nature. If the side channels can be used to decode the device operation, the same can be used to identify the physical property difference of the devices. We investigated the possibility of differentiating the devices based on acoustic side-channel attacks. The Mel Frequency Cepstral Coefficients (MFCC) acoustic features are extracted from the audio samples recorded from different computing devices including embedded modules, laptops, and PCs. A comparative analysis of classification accuracy for the various machine learning algorithms in terms of Precision and Recall is also presented. Our results show that CNN and LSTM give the desired results with better accuracy among the different classification models considered.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"6 1","pages":"857-860"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acoustic Side Channel Attack for Device Identification using Deep Learning Models\",\"authors\":\"V. S. Adhin, Arunjo Maliekkal, K. Mukilan, K. Sanjay, R. Chitra, A. P. James\",\"doi\":\"10.1109/MWSCAS47672.2021.9531738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Side-channel attacks are easy to execute and very hard to detect because of their passive nature. If the side channels can be used to decode the device operation, the same can be used to identify the physical property difference of the devices. We investigated the possibility of differentiating the devices based on acoustic side-channel attacks. The Mel Frequency Cepstral Coefficients (MFCC) acoustic features are extracted from the audio samples recorded from different computing devices including embedded modules, laptops, and PCs. A comparative analysis of classification accuracy for the various machine learning algorithms in terms of Precision and Recall is also presented. Our results show that CNN and LSTM give the desired results with better accuracy among the different classification models considered.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"6 1\",\"pages\":\"857-860\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于其被动特性,侧信道攻击很容易执行并且很难被检测到。如果可以使用侧信道解码设备操作,同样可以使用侧信道来识别设备的物理性质差异。我们研究了基于声学侧信道攻击区分设备的可能性。Mel频率倒谱系数(MFCC)声学特征是从不同计算设备(包括嵌入式模块,笔记本电脑和pc)记录的音频样本中提取的。从查全率和查全率两个方面对不同机器学习算法的分类精度进行了比较分析。我们的研究结果表明,在考虑不同的分类模型时,CNN和LSTM给出了期望的结果,并且准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acoustic Side Channel Attack for Device Identification using Deep Learning Models
Side-channel attacks are easy to execute and very hard to detect because of their passive nature. If the side channels can be used to decode the device operation, the same can be used to identify the physical property difference of the devices. We investigated the possibility of differentiating the devices based on acoustic side-channel attacks. The Mel Frequency Cepstral Coefficients (MFCC) acoustic features are extracted from the audio samples recorded from different computing devices including embedded modules, laptops, and PCs. A comparative analysis of classification accuracy for the various machine learning algorithms in terms of Precision and Recall is also presented. Our results show that CNN and LSTM give the desired results with better accuracy among the different classification models considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1