{"title":"超临界萃取分离真空渣油馏分","authors":"M. Parra, A. León, L. Hoyos","doi":"10.29047/01225383.286","DOIUrl":null,"url":null,"abstract":"The Instituto Colombiano del Petróleo (ICP), has implemented a methodology for separating vacuum residue fractions using the technique of supercritical fluid extraction at the pilot scale. The present study evaluates the efficiency of extraction of fractions of a typical vacuum residue in the Barrancabermeja refinery. The extraction test was carried out with n-hexane under supercritical conditions of temperature and pressure of the 265ºC in the range from 450 to 1250 psi, respectively. Finally, each of the fractions were analyzed for their density, viscosity, sulfur content, Conradson Carbon Residue (CCR) content, SARA com-positional analysis, and metals.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"2015 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Separation of fractions from vacuum residue by supercritical extraction\",\"authors\":\"M. Parra, A. León, L. Hoyos\",\"doi\":\"10.29047/01225383.286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Instituto Colombiano del Petróleo (ICP), has implemented a methodology for separating vacuum residue fractions using the technique of supercritical fluid extraction at the pilot scale. The present study evaluates the efficiency of extraction of fractions of a typical vacuum residue in the Barrancabermeja refinery. The extraction test was carried out with n-hexane under supercritical conditions of temperature and pressure of the 265ºC in the range from 450 to 1250 psi, respectively. Finally, each of the fractions were analyzed for their density, viscosity, sulfur content, Conradson Carbon Residue (CCR) content, SARA com-positional analysis, and metals.\",\"PeriodicalId\":55200,\"journal\":{\"name\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.286\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ct&f-Ciencia Tecnologia Y Futuro","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.29047/01225383.286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Separation of fractions from vacuum residue by supercritical extraction
The Instituto Colombiano del Petróleo (ICP), has implemented a methodology for separating vacuum residue fractions using the technique of supercritical fluid extraction at the pilot scale. The present study evaluates the efficiency of extraction of fractions of a typical vacuum residue in the Barrancabermeja refinery. The extraction test was carried out with n-hexane under supercritical conditions of temperature and pressure of the 265ºC in the range from 450 to 1250 psi, respectively. Finally, each of the fractions were analyzed for their density, viscosity, sulfur content, Conradson Carbon Residue (CCR) content, SARA com-positional analysis, and metals.
期刊介绍:
The objective of CT&F is to publish the achievements of scientific research and technological developments of Ecopetrol S.A. and the research of other institutions in the field of oil, gas and alternative energy sources.
CT&F welcomes original, novel and high-impact contributions from all the fields in the oil and gas industry like: Acquisition and Exploration technologies, Basins characterization and modeling, Petroleum geology, Reservoir modeling, Enhanced Oil Recovery Technologies, Unconventional resources, Petroleum refining, Petrochemistry, Upgrading technologies, Technologies for fuels quality, Process modeling, and optimization, Supply chain optimization, Biofuels, Renewable energies.