采用单一CCTA和所有接地无源元件的新型电压型PID控制器

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Informacije Midem-Journal of Microelectronics Electronic Components and Materials Pub Date : 2022-11-02 DOI:10.33180/infmidem2022.303
P. Mongkolwai, W. Tangsrirat, Taweepol Suesut
{"title":"采用单一CCTA和所有接地无源元件的新型电压型PID控制器","authors":"P. Mongkolwai, W. Tangsrirat, Taweepol Suesut","doi":"10.33180/infmidem2022.303","DOIUrl":null,"url":null,"abstract":": A compact voltage-mode proportional-integral-derivative (PID) controller based on the utilization of a single current conveyor transconductance amplifier (CCTA) is presented in this paper. The presented active PID controller is made up of a single CCTA, and four truly grounded passive components, i.e. two resistors, and two capacitors. The design consideration of the controller parameters has been examined. Besides, the crucial sensitivity performances of the controller parameters for ideal and non-ideal conditions have also been discussed. An application on the closed-loop test system is demonstrated to validate the practicability of the proposed PID controller circuit. To confirm the theoretical behavior, the proposed circuit is simulated with the PSPICE program using TSMC 0.35-μm CMOS process technology. Experimental test results based on commercially available CFOA AD844 and OTA CA3080 integrated circuits are also provided to demonstrate the practicality of the proposed circuit.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"38 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Voltage-Mode PID Controller Using a Single CCTA and All Grounded Passive Components\",\"authors\":\"P. Mongkolwai, W. Tangsrirat, Taweepol Suesut\",\"doi\":\"10.33180/infmidem2022.303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": A compact voltage-mode proportional-integral-derivative (PID) controller based on the utilization of a single current conveyor transconductance amplifier (CCTA) is presented in this paper. The presented active PID controller is made up of a single CCTA, and four truly grounded passive components, i.e. two resistors, and two capacitors. The design consideration of the controller parameters has been examined. Besides, the crucial sensitivity performances of the controller parameters for ideal and non-ideal conditions have also been discussed. An application on the closed-loop test system is demonstrated to validate the practicability of the proposed PID controller circuit. To confirm the theoretical behavior, the proposed circuit is simulated with the PSPICE program using TSMC 0.35-μm CMOS process technology. Experimental test results based on commercially available CFOA AD844 and OTA CA3080 integrated circuits are also provided to demonstrate the practicality of the proposed circuit.\",\"PeriodicalId\":56293,\"journal\":{\"name\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33180/infmidem2022.303\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2022.303","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于单电流传送带跨导放大器(CCTA)的电压型比例积分导数(PID)控制器。所提出的有源PID控制器由单个CCTA和四个真正接地的无源元件组成,即两个电阻和两个电容器。对控制器参数的设计考虑进行了考察。此外,还讨论了控制器参数在理想和非理想条件下的关键灵敏度性能。在闭环测试系统上的应用验证了所提PID控制电路的实用性。为了验证该电路的理论性能,采用台积电0.35 μm CMOS工艺技术,利用PSPICE程序对该电路进行了仿真。基于市售CFOA AD844和OTA CA3080集成电路的实验测试结果也证明了所提电路的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Voltage-Mode PID Controller Using a Single CCTA and All Grounded Passive Components
: A compact voltage-mode proportional-integral-derivative (PID) controller based on the utilization of a single current conveyor transconductance amplifier (CCTA) is presented in this paper. The presented active PID controller is made up of a single CCTA, and four truly grounded passive components, i.e. two resistors, and two capacitors. The design consideration of the controller parameters has been examined. Besides, the crucial sensitivity performances of the controller parameters for ideal and non-ideal conditions have also been discussed. An application on the closed-loop test system is demonstrated to validate the practicability of the proposed PID controller circuit. To confirm the theoretical behavior, the proposed circuit is simulated with the PSPICE program using TSMC 0.35-μm CMOS process technology. Experimental test results based on commercially available CFOA AD844 and OTA CA3080 integrated circuits are also provided to demonstrate the practicality of the proposed circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material. Topics of interest include: Microelectronics, Semiconductor devices, Nanotechnology, Electronic circuits and devices, Electronic sensors and actuators, Microelectromechanical systems (MEMS), Medical electronics, Bioelectronics, Power electronics, Embedded system electronics, System control electronics, Signal processing, Microwave and millimetre-wave techniques, Wireless and optical communications, Antenna technology, Optoelectronics, Photovoltaics, Ceramic materials for electronic devices, Thick and thin film materials for electronic devices.
期刊最新文献
Towards smaller single-point failure-resilient analog circuits by use of a genetic algorithm A New Design Optimization Methodology of Fully Differential Dynamic Comparator An Energy-efficient and Accuracy-adjustable bfloat16 Multiplier High-Gain Super Class-AB Bulk-driven Sub-threshold Low-Power CMOS Transconductance Amplifier for Biomedical Applications A New Quantum-Based Building Block for Designing a Nano-Circuit with Lower Complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1