基于sat的ATPG早期寿命失效检测

M. Sauer, Young Moon Kim, Jun Seomun, Hyung-Ock Kim, K. Do, J. Choi, Kee-sup Kim, S. Mitra, B. Becker
{"title":"基于sat的ATPG早期寿命失效检测","authors":"M. Sauer, Young Moon Kim, Jun Seomun, Hyung-Ock Kim, K. Do, J. Choi, Kee-sup Kim, S. Mitra, B. Becker","doi":"10.1109/TEST.2013.6651925","DOIUrl":null,"url":null,"abstract":"Early-life failures (ELF) result from weak chips that may pass manufacturing tests but fail early in the field, much earlier than expected product lifetime. Recent experimental studies over a range of technologies have demonstrated that ELF defects result in changes in delays over time inside internal nodes of a logic circuit before functional failure occurs. Such changes in delays are distinct from delay degradation caused by circuit aging mechanisms such as Bias Temperature Instability. Traditional transition fault or robust path delay fault test patterns are inadequate for detecting such ELF-induced changes in delays because they do not model the demanding detection conditions precisely. In this paper, we present an automatic test pattern generation (ATPG) technique based on Boolean Satisfiability (SAT) for detecting ELF-induced delay changes at all gates in a given circuit. Our simulation results, using various circuit blocks from the industrial OpenSPARC T2 design as well as standard benchmarks, demonstrate the effectiveness and practicality of our approach in achieving high coverage of ELF-induced delay change detection. We also demonstrate the robustness of our approach to manufacturing process variations.","PeriodicalId":6379,"journal":{"name":"2013 IEEE International Test Conference (ITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Early-life-failure detection using SAT-based ATPG\",\"authors\":\"M. Sauer, Young Moon Kim, Jun Seomun, Hyung-Ock Kim, K. Do, J. Choi, Kee-sup Kim, S. Mitra, B. Becker\",\"doi\":\"10.1109/TEST.2013.6651925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early-life failures (ELF) result from weak chips that may pass manufacturing tests but fail early in the field, much earlier than expected product lifetime. Recent experimental studies over a range of technologies have demonstrated that ELF defects result in changes in delays over time inside internal nodes of a logic circuit before functional failure occurs. Such changes in delays are distinct from delay degradation caused by circuit aging mechanisms such as Bias Temperature Instability. Traditional transition fault or robust path delay fault test patterns are inadequate for detecting such ELF-induced changes in delays because they do not model the demanding detection conditions precisely. In this paper, we present an automatic test pattern generation (ATPG) technique based on Boolean Satisfiability (SAT) for detecting ELF-induced delay changes at all gates in a given circuit. Our simulation results, using various circuit blocks from the industrial OpenSPARC T2 design as well as standard benchmarks, demonstrate the effectiveness and practicality of our approach in achieving high coverage of ELF-induced delay change detection. We also demonstrate the robustness of our approach to manufacturing process variations.\",\"PeriodicalId\":6379,\"journal\":{\"name\":\"2013 IEEE International Test Conference (ITC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2013.6651925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2013.6651925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

早期寿命失效(ELF)是由于可能通过制造测试但在现场早期失效的弱芯片造成的,比预期的产品寿命要早得多。最近对一系列技术的实验研究表明,ELF缺陷导致逻辑电路内部节点在功能故障发生之前随时间变化的延迟。这种延迟的变化不同于由电路老化机制(如偏置温度不稳定性)引起的延迟退化。传统的过渡故障或鲁棒路径延迟故障测试模式不适合检测这种elf引起的延迟变化,因为它们没有精确地模拟要求检测条件。在本文中,我们提出了一种基于布尔可满足性(SAT)的自动测试模式生成(ATPG)技术,用于检测给定电路中所有门的elf诱导延迟变化。我们的仿真结果,使用来自工业OpenSPARC T2设计的各种电路块以及标准基准,证明了我们的方法在实现高覆盖率的elf引起的延迟变化检测方面的有效性和实用性。我们还演示了我们的方法对制造过程变化的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early-life-failure detection using SAT-based ATPG
Early-life failures (ELF) result from weak chips that may pass manufacturing tests but fail early in the field, much earlier than expected product lifetime. Recent experimental studies over a range of technologies have demonstrated that ELF defects result in changes in delays over time inside internal nodes of a logic circuit before functional failure occurs. Such changes in delays are distinct from delay degradation caused by circuit aging mechanisms such as Bias Temperature Instability. Traditional transition fault or robust path delay fault test patterns are inadequate for detecting such ELF-induced changes in delays because they do not model the demanding detection conditions precisely. In this paper, we present an automatic test pattern generation (ATPG) technique based on Boolean Satisfiability (SAT) for detecting ELF-induced delay changes at all gates in a given circuit. Our simulation results, using various circuit blocks from the industrial OpenSPARC T2 design as well as standard benchmarks, demonstrate the effectiveness and practicality of our approach in achieving high coverage of ELF-induced delay change detection. We also demonstrate the robustness of our approach to manufacturing process variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-system diagnosis of RF ICs for tolerance against on-chip in-band interferers Uncertainty-aware robust optimization of test-access architectures for 3D stacked ICs FPGA-based universal embedded digital instrument Early-life-failure detection using SAT-based ATPG Self-repair of uncore components in robust system-on-chips: An OpenSPARC T2 case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1