A. Cryer, G. Kapellmann-Zafra, Samantha Abrego-Hernandez, H. Marin-Reyes, R. French
{"title":"虚拟现实技术在恶劣环境辐射防护干预教学与培训中的优势","authors":"A. Cryer, G. Kapellmann-Zafra, Samantha Abrego-Hernandez, H. Marin-Reyes, R. French","doi":"10.1109/ETFA.2019.8869433","DOIUrl":null,"url":null,"abstract":"Human interventions in radioactive environments have high stakes. They are often time-sensitive and radiation exposure must be minimised for the safety of personnel. Existing sites were not developed with remote decommissioning in mind, therefore human intervention remains the preferred approach for dexterous manual labour over robotic systems.For ageing sites, knowledge transfer after retirement is an increasingly relevant problem for maintenance and decommissioning tasks, where new workers lack the in-depth “on the ground” experience of the installation.Virtual Reality provides workers the agency to explore an accurate representation of the area, enabling them to gain experience without undue radiation exposure.This paper explores and discusses the teaching and training applications of a Virtual Reality environment with integrated radiation dose maps, and looks at where the system may be developed further.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"31 1","pages":"784-789"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Advantages of Virtual Reality in the Teaching and Training of Radiation Protection during Interventions in Harsh Environments\",\"authors\":\"A. Cryer, G. Kapellmann-Zafra, Samantha Abrego-Hernandez, H. Marin-Reyes, R. French\",\"doi\":\"10.1109/ETFA.2019.8869433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human interventions in radioactive environments have high stakes. They are often time-sensitive and radiation exposure must be minimised for the safety of personnel. Existing sites were not developed with remote decommissioning in mind, therefore human intervention remains the preferred approach for dexterous manual labour over robotic systems.For ageing sites, knowledge transfer after retirement is an increasingly relevant problem for maintenance and decommissioning tasks, where new workers lack the in-depth “on the ground” experience of the installation.Virtual Reality provides workers the agency to explore an accurate representation of the area, enabling them to gain experience without undue radiation exposure.This paper explores and discusses the teaching and training applications of a Virtual Reality environment with integrated radiation dose maps, and looks at where the system may be developed further.\",\"PeriodicalId\":6682,\"journal\":{\"name\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"31 1\",\"pages\":\"784-789\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2019.8869433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advantages of Virtual Reality in the Teaching and Training of Radiation Protection during Interventions in Harsh Environments
Human interventions in radioactive environments have high stakes. They are often time-sensitive and radiation exposure must be minimised for the safety of personnel. Existing sites were not developed with remote decommissioning in mind, therefore human intervention remains the preferred approach for dexterous manual labour over robotic systems.For ageing sites, knowledge transfer after retirement is an increasingly relevant problem for maintenance and decommissioning tasks, where new workers lack the in-depth “on the ground” experience of the installation.Virtual Reality provides workers the agency to explore an accurate representation of the area, enabling them to gain experience without undue radiation exposure.This paper explores and discusses the teaching and training applications of a Virtual Reality environment with integrated radiation dose maps, and looks at where the system may be developed further.