{"title":"利用改性天然纳米沸石从源头管理和去除水中的硝酸盐污染","authors":"Bahareh Azemi motlagh, A. Mohammadi, M. Ardjmand","doi":"10.24200/amecj.v5.i01.165","DOIUrl":null,"url":null,"abstract":"Nitrate is a hazardous substance for human health, the removal of which is an important environmental priority. Therefore, in this study, first, the sources of nitrate pollution of water were investigated, then the structure, role, and application of nanozeolites for the removal of nitrate ions were studied by the analytical method. Also, the presentation of management solutions, identification of polluting industrial sectors, different methods of removal and fabrication of ZSM-5/Fe/Ni nanosorbents, and the determination of optimal conditions for nitrate removal were investigated by experimental design software and graphical analysis of effective parameters. The results of graphical analysis of laboratory method showed us, the highest nitrate removal efficiency at a residence time of 150 minutes, pH 3, 4 g L-1 adsorbent, and 40 mg L-1 nitrate were achieved (%RE:91.5-97.4). Experimental results indicate the high efficiency, absorption capacity, and effectiveness of ZSM-5/Fe/Ni adsorbents for nitrate removal in waters. Finally, the absorbance values or nitrate concentrations between 20-120 mg L-1 were measured by the UV-Vis spectrophotometry. The maximum absorption capacity of ZSM-5/Fe/Ni adsorbents for nitrate was obtained 136.7 mg g-1. The developed method based on a novel ZSM-5/Fe/Ni adsorbents has many advantages such as simple, low cost, high efficiency, and favorite recovery. ","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Management and removal of nitrate contamination of water at the source using modified natural nano zeolite\",\"authors\":\"Bahareh Azemi motlagh, A. Mohammadi, M. Ardjmand\",\"doi\":\"10.24200/amecj.v5.i01.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrate is a hazardous substance for human health, the removal of which is an important environmental priority. Therefore, in this study, first, the sources of nitrate pollution of water were investigated, then the structure, role, and application of nanozeolites for the removal of nitrate ions were studied by the analytical method. Also, the presentation of management solutions, identification of polluting industrial sectors, different methods of removal and fabrication of ZSM-5/Fe/Ni nanosorbents, and the determination of optimal conditions for nitrate removal were investigated by experimental design software and graphical analysis of effective parameters. The results of graphical analysis of laboratory method showed us, the highest nitrate removal efficiency at a residence time of 150 minutes, pH 3, 4 g L-1 adsorbent, and 40 mg L-1 nitrate were achieved (%RE:91.5-97.4). Experimental results indicate the high efficiency, absorption capacity, and effectiveness of ZSM-5/Fe/Ni adsorbents for nitrate removal in waters. Finally, the absorbance values or nitrate concentrations between 20-120 mg L-1 were measured by the UV-Vis spectrophotometry. The maximum absorption capacity of ZSM-5/Fe/Ni adsorbents for nitrate was obtained 136.7 mg g-1. The developed method based on a novel ZSM-5/Fe/Ni adsorbents has many advantages such as simple, low cost, high efficiency, and favorite recovery. \",\"PeriodicalId\":7797,\"journal\":{\"name\":\"Analytical Methods in Environmental Chemistry Journal\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods in Environmental Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24200/amecj.v5.i01.165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods in Environmental Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/amecj.v5.i01.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Management and removal of nitrate contamination of water at the source using modified natural nano zeolite
Nitrate is a hazardous substance for human health, the removal of which is an important environmental priority. Therefore, in this study, first, the sources of nitrate pollution of water were investigated, then the structure, role, and application of nanozeolites for the removal of nitrate ions were studied by the analytical method. Also, the presentation of management solutions, identification of polluting industrial sectors, different methods of removal and fabrication of ZSM-5/Fe/Ni nanosorbents, and the determination of optimal conditions for nitrate removal were investigated by experimental design software and graphical analysis of effective parameters. The results of graphical analysis of laboratory method showed us, the highest nitrate removal efficiency at a residence time of 150 minutes, pH 3, 4 g L-1 adsorbent, and 40 mg L-1 nitrate were achieved (%RE:91.5-97.4). Experimental results indicate the high efficiency, absorption capacity, and effectiveness of ZSM-5/Fe/Ni adsorbents for nitrate removal in waters. Finally, the absorbance values or nitrate concentrations between 20-120 mg L-1 were measured by the UV-Vis spectrophotometry. The maximum absorption capacity of ZSM-5/Fe/Ni adsorbents for nitrate was obtained 136.7 mg g-1. The developed method based on a novel ZSM-5/Fe/Ni adsorbents has many advantages such as simple, low cost, high efficiency, and favorite recovery.