{"title":"-0.5…+0.5 kPa高灵敏度压阻式压力传感器的研究","authors":"M. Basov, D. Prigodskiy","doi":"10.21203/rs.3.rs-658941/v1","DOIUrl":null,"url":null,"abstract":"\n The investigation of the pressure sensor chip’s design developed for operation in ultralow differential pressure ranges has been conducted. The optimum geometry of a membrane has been defined using available technological resources. The pressure sensor chip with an area of 6.15х6.15 mm has an average sensitivity S of 34.5 mV/кPa/V at nonlinearity 2KNL = 0.81 %FS and thermal hysteresis up to 0.6 %FS was created. Owing to the chip connection with stop elements, the burst pressure reaches 450 кPa.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"165 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of High Sensitivity Piezoresistive Pressure Sensors for -0.5…+0.5 kPa\",\"authors\":\"M. Basov, D. Prigodskiy\",\"doi\":\"10.21203/rs.3.rs-658941/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The investigation of the pressure sensor chip’s design developed for operation in ultralow differential pressure ranges has been conducted. The optimum geometry of a membrane has been defined using available technological resources. The pressure sensor chip with an area of 6.15х6.15 mm has an average sensitivity S of 34.5 mV/кPa/V at nonlinearity 2KNL = 0.81 %FS and thermal hysteresis up to 0.6 %FS was created. Owing to the chip connection with stop elements, the burst pressure reaches 450 кPa.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-658941/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-658941/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of High Sensitivity Piezoresistive Pressure Sensors for -0.5…+0.5 kPa
The investigation of the pressure sensor chip’s design developed for operation in ultralow differential pressure ranges has been conducted. The optimum geometry of a membrane has been defined using available technological resources. The pressure sensor chip with an area of 6.15х6.15 mm has an average sensitivity S of 34.5 mV/кPa/V at nonlinearity 2KNL = 0.81 %FS and thermal hysteresis up to 0.6 %FS was created. Owing to the chip connection with stop elements, the burst pressure reaches 450 кPa.