Naoya Uene, T. Mabuchi, M. Zaitsu, Shigeo Yasuhara, T. Tokumasu
{"title":"反应力场模拟Si(100)衬底上氢化非晶硅热化学气相沉积的分子动力学","authors":"Naoya Uene, T. Mabuchi, M. Zaitsu, Shigeo Yasuhara, T. Tokumasu","doi":"10.1109/sispad.2019.8870438","DOIUrl":null,"url":null,"abstract":"We calculate a deposition process of hydrogenated amorphous silicon (a-Si:H) films on a silicon (100) substrate by reactive force-field molecular dynamics simulations. The influences of (a) substrate temperatures and (b) coverage of hydrogen atoms on the substrate on the adsorption probability are investigated, and it is found out that (a) the adsorption probability is almost constant for SiH2 and SiH3, but decrease with increase in the substrate temperature for SiH4, (b) it decreases with the increase in hydrogen coverage.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"13 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dyanamics Simulation of Thermal Chemical Vapor Deposition for Hydrogenated Amorphous Silicon on Si (100) Substrate by Reactive Force-Field\",\"authors\":\"Naoya Uene, T. Mabuchi, M. Zaitsu, Shigeo Yasuhara, T. Tokumasu\",\"doi\":\"10.1109/sispad.2019.8870438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate a deposition process of hydrogenated amorphous silicon (a-Si:H) films on a silicon (100) substrate by reactive force-field molecular dynamics simulations. The influences of (a) substrate temperatures and (b) coverage of hydrogen atoms on the substrate on the adsorption probability are investigated, and it is found out that (a) the adsorption probability is almost constant for SiH2 and SiH3, but decrease with increase in the substrate temperature for SiH4, (b) it decreases with the increase in hydrogen coverage.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"13 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sispad.2019.8870438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sispad.2019.8870438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Dyanamics Simulation of Thermal Chemical Vapor Deposition for Hydrogenated Amorphous Silicon on Si (100) Substrate by Reactive Force-Field
We calculate a deposition process of hydrogenated amorphous silicon (a-Si:H) films on a silicon (100) substrate by reactive force-field molecular dynamics simulations. The influences of (a) substrate temperatures and (b) coverage of hydrogen atoms on the substrate on the adsorption probability are investigated, and it is found out that (a) the adsorption probability is almost constant for SiH2 and SiH3, but decrease with increase in the substrate temperature for SiH4, (b) it decreases with the increase in hydrogen coverage.