{"title":"基于语法进化的模拟电路合成","authors":"M. Kunaver","doi":"10.33180/infmidem2019.405","DOIUrl":null,"url":null,"abstract":"Computer aided circuit design is becoming one of the mainstream methods for helping circuit designers. Multiple new methods have been developed in this field including Evolutionary Electronics. A lot of work has been done in this field but there is still a room for improvement since some of the solutions lack the flexibility (diversity of components, limited topology etc.) in circuit design or lack complex fitness functions that would enable the synthesis of more complex circuits. The research presented in this article aims to improve this by introducing Grammatical Evolution-based approach for circuit synthesis. Grammatical Evolution offers great flexibility since it is rule based – adding a new element is as simple as writing one additional line of initialization code. In addition, the use of a complex multi-criteria function allows us to create circuits that can be as complex as required thus further increasing the flexibility of the approach. To achieve this, we use a combination of Python and SPICE to create a series of netlists, evaluate them in the PyOpus environment, and select the best possible circuit for the task. We demonstrate the efficiency of our approach in three different case studies where we automatically generate oscillators and high/low-pass filters of second and third order.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"33 1","pages":"229-240"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Grammatical Evolution-based Analog Circuit Synthesis\",\"authors\":\"M. Kunaver\",\"doi\":\"10.33180/infmidem2019.405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer aided circuit design is becoming one of the mainstream methods for helping circuit designers. Multiple new methods have been developed in this field including Evolutionary Electronics. A lot of work has been done in this field but there is still a room for improvement since some of the solutions lack the flexibility (diversity of components, limited topology etc.) in circuit design or lack complex fitness functions that would enable the synthesis of more complex circuits. The research presented in this article aims to improve this by introducing Grammatical Evolution-based approach for circuit synthesis. Grammatical Evolution offers great flexibility since it is rule based – adding a new element is as simple as writing one additional line of initialization code. In addition, the use of a complex multi-criteria function allows us to create circuits that can be as complex as required thus further increasing the flexibility of the approach. To achieve this, we use a combination of Python and SPICE to create a series of netlists, evaluate them in the PyOpus environment, and select the best possible circuit for the task. We demonstrate the efficiency of our approach in three different case studies where we automatically generate oscillators and high/low-pass filters of second and third order.\",\"PeriodicalId\":56293,\"journal\":{\"name\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"volume\":\"33 1\",\"pages\":\"229-240\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33180/infmidem2019.405\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2019.405","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Grammatical Evolution-based Analog Circuit Synthesis
Computer aided circuit design is becoming one of the mainstream methods for helping circuit designers. Multiple new methods have been developed in this field including Evolutionary Electronics. A lot of work has been done in this field but there is still a room for improvement since some of the solutions lack the flexibility (diversity of components, limited topology etc.) in circuit design or lack complex fitness functions that would enable the synthesis of more complex circuits. The research presented in this article aims to improve this by introducing Grammatical Evolution-based approach for circuit synthesis. Grammatical Evolution offers great flexibility since it is rule based – adding a new element is as simple as writing one additional line of initialization code. In addition, the use of a complex multi-criteria function allows us to create circuits that can be as complex as required thus further increasing the flexibility of the approach. To achieve this, we use a combination of Python and SPICE to create a series of netlists, evaluate them in the PyOpus environment, and select the best possible circuit for the task. We demonstrate the efficiency of our approach in three different case studies where we automatically generate oscillators and high/low-pass filters of second and third order.
期刊介绍:
Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material.
Topics of interest include:
Microelectronics,
Semiconductor devices,
Nanotechnology,
Electronic circuits and devices,
Electronic sensors and actuators,
Microelectromechanical systems (MEMS),
Medical electronics,
Bioelectronics,
Power electronics,
Embedded system electronics,
System control electronics,
Signal processing,
Microwave and millimetre-wave techniques,
Wireless and optical communications,
Antenna technology,
Optoelectronics,
Photovoltaics,
Ceramic materials for electronic devices,
Thick and thin film materials for electronic devices.