基于并行分布算法的超低功耗容错原位滑动窗近似内积方案

Dominick Rizk, Rodrigue Rizk, Frederic Rizk, Ashok Kumar
{"title":"基于并行分布算法的超低功耗容错原位滑动窗近似内积方案","authors":"Dominick Rizk, Rodrigue Rizk, Frederic Rizk, Ashok Kumar","doi":"10.1109/MWSCAS47672.2021.9531886","DOIUrl":null,"url":null,"abstract":"Approximate computing (AC) provides an efficient solution for reducing power, area, and complexity of digital systems. When backed with distributed arithmetic (DA), AC leverages the ability to implement ultra-efficient inner-product units in terms of area, power, and delay. Such units can be used in any inherently resilient application. This paper presents a novel scheme of approximate inner-product based on parallel DA for low-power fault-tolerant applications backed with a novel in-situ sliding window algorithm. Our model eliminates the need for an explicit error correction scheme, which further reduces the overhead while improving the accuracy. The experimental results show that our model achieves a state-of-the-art performance in terms of power delay product (PDP), area power product (APP) with a reduction of 39.26% and 48.83%, respectively.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"11 1","pages":"503-506"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An In-Situ Sliding Window Approximate Inner-Product Scheme Based on Parallel Distributed Arithmetic for Ultra-Low Power Fault-Tolerant Applications\",\"authors\":\"Dominick Rizk, Rodrigue Rizk, Frederic Rizk, Ashok Kumar\",\"doi\":\"10.1109/MWSCAS47672.2021.9531886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate computing (AC) provides an efficient solution for reducing power, area, and complexity of digital systems. When backed with distributed arithmetic (DA), AC leverages the ability to implement ultra-efficient inner-product units in terms of area, power, and delay. Such units can be used in any inherently resilient application. This paper presents a novel scheme of approximate inner-product based on parallel DA for low-power fault-tolerant applications backed with a novel in-situ sliding window algorithm. Our model eliminates the need for an explicit error correction scheme, which further reduces the overhead while improving the accuracy. The experimental results show that our model achieves a state-of-the-art performance in terms of power delay product (PDP), area power product (APP) with a reduction of 39.26% and 48.83%, respectively.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"11 1\",\"pages\":\"503-506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近似计算(AC)为降低数字系统的功耗、面积和复杂度提供了一种有效的解决方案。当有分布式算术(DA)支持时,AC利用在面积、功率和延迟方面实现超高效内积单元的能力。这样的单元可以用于任何具有固有弹性的应用程序。本文提出了一种基于并行数据分析的低功耗容错近似内积方案,并提出了一种新的原位滑动窗算法。我们的模型消除了对显式纠错方案的需要,这进一步降低了开销,同时提高了准确性。实验结果表明,该模型在功率延迟积(PDP)和面积功率积(APP)方面达到了最先进的性能,分别降低了39.26%和48.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An In-Situ Sliding Window Approximate Inner-Product Scheme Based on Parallel Distributed Arithmetic for Ultra-Low Power Fault-Tolerant Applications
Approximate computing (AC) provides an efficient solution for reducing power, area, and complexity of digital systems. When backed with distributed arithmetic (DA), AC leverages the ability to implement ultra-efficient inner-product units in terms of area, power, and delay. Such units can be used in any inherently resilient application. This paper presents a novel scheme of approximate inner-product based on parallel DA for low-power fault-tolerant applications backed with a novel in-situ sliding window algorithm. Our model eliminates the need for an explicit error correction scheme, which further reduces the overhead while improving the accuracy. The experimental results show that our model achieves a state-of-the-art performance in terms of power delay product (PDP), area power product (APP) with a reduction of 39.26% and 48.83%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1