T. Ciszek, T. Wang, R. Burrows, T. Bekkadahl, M. Symko, J. Webb
{"title":"氮掺杂对高纯无位错多晶硅微缺陷和少数载流子寿命的影响","authors":"T. Ciszek, T. Wang, R. Burrows, T. Bekkadahl, M. Symko, J. Webb","doi":"10.1109/WCPEC.1994.520195","DOIUrl":null,"url":null,"abstract":"We studied the effects of Si growth in atmospheres containing N/sub 2/ on minority charge carrier lifetime /spl tau/ using a high-purity, induction-heated, float-zone (FZ) crystal growth method. Ingots were grown in ambients that ranged from pure argon (99.9995%) to pure N/sub 2/ (99.999%). /spl tau/ was measured as a function of position along the ingots using the ASTM F28-75 photoconductive decay (PCD) method. We found that Ga-doped, multicrystalline silicon ingot growth in a partial or total nitrogen ambient has a negligible effect on minority charge carrier lifetime and no significant grain boundary passivation effect. Values of 40 /spl mu/s</spl tau/<100 /spl mu/s were typical regardless of ambient. For dislocation-free (DF) growth, the degradation of /spl tau/ is minimal and /spl tau/ values above 1000 /spl mu/s are obtained if the amount of N/sub 2/ in the purge gas is below the level at which nitride compounds form in the melt and disrupt DF growth.","PeriodicalId":20517,"journal":{"name":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","volume":"5 1","pages":"1343-1346 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Effect of nitrogen doping on microdefects and minority charge carrier lifetime of high-purity, dislocation-free and multicrystalline silicon\",\"authors\":\"T. Ciszek, T. Wang, R. Burrows, T. Bekkadahl, M. Symko, J. Webb\",\"doi\":\"10.1109/WCPEC.1994.520195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the effects of Si growth in atmospheres containing N/sub 2/ on minority charge carrier lifetime /spl tau/ using a high-purity, induction-heated, float-zone (FZ) crystal growth method. Ingots were grown in ambients that ranged from pure argon (99.9995%) to pure N/sub 2/ (99.999%). /spl tau/ was measured as a function of position along the ingots using the ASTM F28-75 photoconductive decay (PCD) method. We found that Ga-doped, multicrystalline silicon ingot growth in a partial or total nitrogen ambient has a negligible effect on minority charge carrier lifetime and no significant grain boundary passivation effect. Values of 40 /spl mu/s</spl tau/<100 /spl mu/s were typical regardless of ambient. For dislocation-free (DF) growth, the degradation of /spl tau/ is minimal and /spl tau/ values above 1000 /spl mu/s are obtained if the amount of N/sub 2/ in the purge gas is below the level at which nitride compounds form in the melt and disrupt DF growth.\",\"PeriodicalId\":20517,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"volume\":\"5 1\",\"pages\":\"1343-1346 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCPEC.1994.520195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCPEC.1994.520195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of nitrogen doping on microdefects and minority charge carrier lifetime of high-purity, dislocation-free and multicrystalline silicon
We studied the effects of Si growth in atmospheres containing N/sub 2/ on minority charge carrier lifetime /spl tau/ using a high-purity, induction-heated, float-zone (FZ) crystal growth method. Ingots were grown in ambients that ranged from pure argon (99.9995%) to pure N/sub 2/ (99.999%). /spl tau/ was measured as a function of position along the ingots using the ASTM F28-75 photoconductive decay (PCD) method. We found that Ga-doped, multicrystalline silicon ingot growth in a partial or total nitrogen ambient has a negligible effect on minority charge carrier lifetime and no significant grain boundary passivation effect. Values of 40 /spl mu/s