J. Locati, C. Rivero, J. Delalleau, V. Della Marca, K. Coulié, J. Innocenti, O. Paulet, A. Régnier, S. Niel
{"title":"逻辑存储电路零成本高压晶体管结构的TCAD研究","authors":"J. Locati, C. Rivero, J. Delalleau, V. Della Marca, K. Coulié, J. Innocenti, O. Paulet, A. Régnier, S. Niel","doi":"10.1109/SISPAD.2019.8870384","DOIUrl":null,"url":null,"abstract":"In this paper, a new device architecture has been studied by TCAD process simulations in order to provide the improvements on the electrical characteristics. We focus mainly on the drain-bulk junction breakdown voltage, of a double 130 nm poly gate transistor for Non-Volatile Memory technology. It is used as a word line select transistor, handling the drain voltage up to 13 V. The proposed structure has been implemented on silicon and the electrical measurements demonstrate the good predictability given by simulations. Finally, a new zero-cost added process asymmetric architecture is also studied to propose further improvements in terms of footprint or electrical characteristics.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"20 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TCAD investigation of zero-cost high voltage transistor architectures for logic memory circuits\",\"authors\":\"J. Locati, C. Rivero, J. Delalleau, V. Della Marca, K. Coulié, J. Innocenti, O. Paulet, A. Régnier, S. Niel\",\"doi\":\"10.1109/SISPAD.2019.8870384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new device architecture has been studied by TCAD process simulations in order to provide the improvements on the electrical characteristics. We focus mainly on the drain-bulk junction breakdown voltage, of a double 130 nm poly gate transistor for Non-Volatile Memory technology. It is used as a word line select transistor, handling the drain voltage up to 13 V. The proposed structure has been implemented on silicon and the electrical measurements demonstrate the good predictability given by simulations. Finally, a new zero-cost added process asymmetric architecture is also studied to propose further improvements in terms of footprint or electrical characteristics.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"20 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TCAD investigation of zero-cost high voltage transistor architectures for logic memory circuits
In this paper, a new device architecture has been studied by TCAD process simulations in order to provide the improvements on the electrical characteristics. We focus mainly on the drain-bulk junction breakdown voltage, of a double 130 nm poly gate transistor for Non-Volatile Memory technology. It is used as a word line select transistor, handling the drain voltage up to 13 V. The proposed structure has been implemented on silicon and the electrical measurements demonstrate the good predictability given by simulations. Finally, a new zero-cost added process asymmetric architecture is also studied to propose further improvements in terms of footprint or electrical characteristics.