T. Nogami, M. He, X. Zhang, K. Tanwar, R. Patlolla, J. Kelly, D. Rath, M. Krishnan, X. Lin, O. Straten, H. Shobha, J. Li, A. Madan, P. Flaitz, C. Parks, C. Hu, C. Penny, A. Simon, T. Bolom, J. Maniscalco, D. Canaperi, T. Spooner, D. Edelstein
{"title":"10nm节点CVD-Co/Cu(Mn)的集成与可靠性","authors":"T. Nogami, M. He, X. Zhang, K. Tanwar, R. Patlolla, J. Kelly, D. Rath, M. Krishnan, X. Lin, O. Straten, H. Shobha, J. Li, A. Madan, P. Flaitz, C. Parks, C. Hu, C. Penny, A. Simon, T. Bolom, J. Maniscalco, D. Canaperi, T. Spooner, D. Edelstein","doi":"10.1109/IITC.2013.6615592","DOIUrl":null,"url":null,"abstract":"In studying integrated dual damascene hardware at 10 nm node dimensions, we identified the mechanism for Co liner enhancement of Cu gap-fill to be a wetting improvement of the PVD Cu seed, rather than a local nucleation enhancement for Cu plating. We then show that Co “divot” (top-comer slit void defect) formation can be suppressed by a new wet chemistry, in turn eliminating divot-induced EM degradation. Further, we confirm a relative decrease in Cu-alloy seed proportional resistivity impact compared to scattering at scaled dimensions, and finally we address the incompatibility between the commonly-used carbonyl-based CVD-Co process with Cu-alloy seed EM performance This problem is due to oxidation of Ta(N) barriers at the TaN/CVD-Co interface by carbonyl-based CVD processes, which then consumes alloy atoms before they can segregate at the Cu/cap interface. We show that O-free CVD-Co may solve this problem. The above solutions may then enable CVD-Co/Cu-alloy seed integration in advanced nodes.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"11 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"CVD-Co/Cu(Mn) integration and reliability for 10 nm node\",\"authors\":\"T. Nogami, M. He, X. Zhang, K. Tanwar, R. Patlolla, J. Kelly, D. Rath, M. Krishnan, X. Lin, O. Straten, H. Shobha, J. Li, A. Madan, P. Flaitz, C. Parks, C. Hu, C. Penny, A. Simon, T. Bolom, J. Maniscalco, D. Canaperi, T. Spooner, D. Edelstein\",\"doi\":\"10.1109/IITC.2013.6615592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In studying integrated dual damascene hardware at 10 nm node dimensions, we identified the mechanism for Co liner enhancement of Cu gap-fill to be a wetting improvement of the PVD Cu seed, rather than a local nucleation enhancement for Cu plating. We then show that Co “divot” (top-comer slit void defect) formation can be suppressed by a new wet chemistry, in turn eliminating divot-induced EM degradation. Further, we confirm a relative decrease in Cu-alloy seed proportional resistivity impact compared to scattering at scaled dimensions, and finally we address the incompatibility between the commonly-used carbonyl-based CVD-Co process with Cu-alloy seed EM performance This problem is due to oxidation of Ta(N) barriers at the TaN/CVD-Co interface by carbonyl-based CVD processes, which then consumes alloy atoms before they can segregate at the Cu/cap interface. We show that O-free CVD-Co may solve this problem. The above solutions may then enable CVD-Co/Cu-alloy seed integration in advanced nodes.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"11 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CVD-Co/Cu(Mn) integration and reliability for 10 nm node
In studying integrated dual damascene hardware at 10 nm node dimensions, we identified the mechanism for Co liner enhancement of Cu gap-fill to be a wetting improvement of the PVD Cu seed, rather than a local nucleation enhancement for Cu plating. We then show that Co “divot” (top-comer slit void defect) formation can be suppressed by a new wet chemistry, in turn eliminating divot-induced EM degradation. Further, we confirm a relative decrease in Cu-alloy seed proportional resistivity impact compared to scattering at scaled dimensions, and finally we address the incompatibility between the commonly-used carbonyl-based CVD-Co process with Cu-alloy seed EM performance This problem is due to oxidation of Ta(N) barriers at the TaN/CVD-Co interface by carbonyl-based CVD processes, which then consumes alloy atoms before they can segregate at the Cu/cap interface. We show that O-free CVD-Co may solve this problem. The above solutions may then enable CVD-Co/Cu-alloy seed integration in advanced nodes.