Weston D Craig, Fiona B Van Leeuwen, Steven R Jarrett, R. Hansen, R. Berke
{"title":"利用文本作为数字图像相关中的原生散斑模式","authors":"Weston D Craig, Fiona B Van Leeuwen, Steven R Jarrett, R. Hansen, R. Berke","doi":"10.1177/03093247211045602","DOIUrl":null,"url":null,"abstract":"In certain applications, native surface patterns can be used in place of speckle patterns in digital image correlation (DIC). This paper explores the feasibility of using text as a native speckle pattern in DIC. Five text speckle patterns are tested in three different scenarios: a rigid body translation test, a rigid body rotation test, and an out of plane bending test. The patterns are benchmarked against a sixth, random speckle pattern applied using traditional DIC speckling methods. Rigid body translation tests are additionally performed on text patterns with varying font types and line spacings. In general, text patterns have good contrast, but low density as line spacing increases. Measurement uncertainty for the text patterns was comparable to measurement uncertainty in the random speckle pattern. Results from these tests show that while text patterns cannot be expected to perform better than a traditional DIC speckle pattern, text patterns can be effective speckle patterns in situations where already present on a specimen and applying a traditional speckle pattern is difficult.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"5 1","pages":"539 - 555"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using text as a native speckle pattern in digital image correlation\",\"authors\":\"Weston D Craig, Fiona B Van Leeuwen, Steven R Jarrett, R. Hansen, R. Berke\",\"doi\":\"10.1177/03093247211045602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In certain applications, native surface patterns can be used in place of speckle patterns in digital image correlation (DIC). This paper explores the feasibility of using text as a native speckle pattern in DIC. Five text speckle patterns are tested in three different scenarios: a rigid body translation test, a rigid body rotation test, and an out of plane bending test. The patterns are benchmarked against a sixth, random speckle pattern applied using traditional DIC speckling methods. Rigid body translation tests are additionally performed on text patterns with varying font types and line spacings. In general, text patterns have good contrast, but low density as line spacing increases. Measurement uncertainty for the text patterns was comparable to measurement uncertainty in the random speckle pattern. Results from these tests show that while text patterns cannot be expected to perform better than a traditional DIC speckle pattern, text patterns can be effective speckle patterns in situations where already present on a specimen and applying a traditional speckle pattern is difficult.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":\"5 1\",\"pages\":\"539 - 555\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247211045602\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247211045602","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Using text as a native speckle pattern in digital image correlation
In certain applications, native surface patterns can be used in place of speckle patterns in digital image correlation (DIC). This paper explores the feasibility of using text as a native speckle pattern in DIC. Five text speckle patterns are tested in three different scenarios: a rigid body translation test, a rigid body rotation test, and an out of plane bending test. The patterns are benchmarked against a sixth, random speckle pattern applied using traditional DIC speckling methods. Rigid body translation tests are additionally performed on text patterns with varying font types and line spacings. In general, text patterns have good contrast, but low density as line spacing increases. Measurement uncertainty for the text patterns was comparable to measurement uncertainty in the random speckle pattern. Results from these tests show that while text patterns cannot be expected to perform better than a traditional DIC speckle pattern, text patterns can be effective speckle patterns in situations where already present on a specimen and applying a traditional speckle pattern is difficult.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).