{"title":"采用混合DNN-SSO方法预测和改进室温下Inconel 718板材拉深工艺参数","authors":"K. Ganesan, Saravanan Sambasivam, R. Ramadass","doi":"10.1177/03093247231179006","DOIUrl":null,"url":null,"abstract":"The deep drawing technique is an important metal forming processes, and it is rarely used in the Inconel 718 sheet. The main purpose of this study is to perform a deep drawing process using the Inconel 718 alloy. In this research article, the Inconel 718 alloy sheet of 1 mm thickness is drawn into sheet metal cups, and defects such as thinning, and earing are controlled using selected input parameters such as Blank Holding Force (BHF) Blank Diameter (BD), and Punch Nose Radius (Rpn). A Box Behnken design (BBD) is used to evaluate the effects of output parameters. The hybrid Deep Neural Network (DNN) is used to predict the experimental outcomes obtained from the deep drawing process. For deep drawing process blank holding force is favorable for both thinning and earing. The minimum thinning value obtained during experimentation is 0.033 mm. During experimentation less earing value is 2.47 mm. Hybrid Deep Neural Network based Sparrow Search Optimization (DNN-SSO) gives the prediction model, where the values are much closer to the experimented model than RSM and non-Hybrid DNN. The minimum thinning obtained in the prediction model such as RSM, SSO-DNN, and DNN are 0.030, 0.0304, and 0.023 mm. Likewise, the minimum earing obtained from the predictive model is 2.65, 2.49, and 2.51 mm respectively. The minimum error is found in the hybrid DNN and the average RMSE for thinning is 0.002 and earing is 0.0024. The regression coefficient of thinning and earing is 99% which proves the experimental outcomes matches with RSM validation.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"39 1","pages":"633 - 648"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting and improving the novel process parameters involved in deep drawing process of Inconel 718 sheet at room temperature using hybrid DNN-SSO approach\",\"authors\":\"K. Ganesan, Saravanan Sambasivam, R. Ramadass\",\"doi\":\"10.1177/03093247231179006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deep drawing technique is an important metal forming processes, and it is rarely used in the Inconel 718 sheet. The main purpose of this study is to perform a deep drawing process using the Inconel 718 alloy. In this research article, the Inconel 718 alloy sheet of 1 mm thickness is drawn into sheet metal cups, and defects such as thinning, and earing are controlled using selected input parameters such as Blank Holding Force (BHF) Blank Diameter (BD), and Punch Nose Radius (Rpn). A Box Behnken design (BBD) is used to evaluate the effects of output parameters. The hybrid Deep Neural Network (DNN) is used to predict the experimental outcomes obtained from the deep drawing process. For deep drawing process blank holding force is favorable for both thinning and earing. The minimum thinning value obtained during experimentation is 0.033 mm. During experimentation less earing value is 2.47 mm. Hybrid Deep Neural Network based Sparrow Search Optimization (DNN-SSO) gives the prediction model, where the values are much closer to the experimented model than RSM and non-Hybrid DNN. The minimum thinning obtained in the prediction model such as RSM, SSO-DNN, and DNN are 0.030, 0.0304, and 0.023 mm. Likewise, the minimum earing obtained from the predictive model is 2.65, 2.49, and 2.51 mm respectively. The minimum error is found in the hybrid DNN and the average RMSE for thinning is 0.002 and earing is 0.0024. The regression coefficient of thinning and earing is 99% which proves the experimental outcomes matches with RSM validation.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":\"39 1\",\"pages\":\"633 - 648\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247231179006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231179006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Predicting and improving the novel process parameters involved in deep drawing process of Inconel 718 sheet at room temperature using hybrid DNN-SSO approach
The deep drawing technique is an important metal forming processes, and it is rarely used in the Inconel 718 sheet. The main purpose of this study is to perform a deep drawing process using the Inconel 718 alloy. In this research article, the Inconel 718 alloy sheet of 1 mm thickness is drawn into sheet metal cups, and defects such as thinning, and earing are controlled using selected input parameters such as Blank Holding Force (BHF) Blank Diameter (BD), and Punch Nose Radius (Rpn). A Box Behnken design (BBD) is used to evaluate the effects of output parameters. The hybrid Deep Neural Network (DNN) is used to predict the experimental outcomes obtained from the deep drawing process. For deep drawing process blank holding force is favorable for both thinning and earing. The minimum thinning value obtained during experimentation is 0.033 mm. During experimentation less earing value is 2.47 mm. Hybrid Deep Neural Network based Sparrow Search Optimization (DNN-SSO) gives the prediction model, where the values are much closer to the experimented model than RSM and non-Hybrid DNN. The minimum thinning obtained in the prediction model such as RSM, SSO-DNN, and DNN are 0.030, 0.0304, and 0.023 mm. Likewise, the minimum earing obtained from the predictive model is 2.65, 2.49, and 2.51 mm respectively. The minimum error is found in the hybrid DNN and the average RMSE for thinning is 0.002 and earing is 0.0024. The regression coefficient of thinning and earing is 99% which proves the experimental outcomes matches with RSM validation.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).