{"title":"基于DIC和声发射技术的坝混凝土断裂力学速率效应研究","authors":"Jingwu Bu, Xinyu Wu, Huiying Xu, Xudong Chen","doi":"10.1177/03093247211038131","DOIUrl":null,"url":null,"abstract":"In order to study the effect of loading rate on fracture behavior of dam concrete, wedge splitting tests of various loading rates (0.1, 0.01, and 0.001 mm/s) are carried out on two kinds of full-graded dam concrete notched cubes with side lengths of 300 and 450 mm, respectively. Digital image correlation and acoustic emission technique are used to measure the deformation and acoustic emission parameters of the dam concrete. Test results show that: the peak load and fracture energy of dam concrete specimens increases with the increase of loading rate. And the higher the loading rate is, the fracture of concrete shows more obvious brittleness. Influenced by the boundary effect, the CTOD increases with the increasing of loading rate, however, the length of crack decreases as loading rate increases. With the loading rate increases, the energy mutation area is more obvious, while the accumulated acoustic emission energy is affected by both the loading rate and the maximum aggregate size. The number of acoustic emission three-dimensional locating points and the shear signal decrease with the increase of loading rate, which is attributed to that the faster the loading rate is, the less sufficient the development of micro cracks in concrete is. The test results can supply experimental data to the fracture mechanics of dam concrete.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The rate effect on fracture mechanics of dam concrete based on DIC and AE techniques\",\"authors\":\"Jingwu Bu, Xinyu Wu, Huiying Xu, Xudong Chen\",\"doi\":\"10.1177/03093247211038131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the effect of loading rate on fracture behavior of dam concrete, wedge splitting tests of various loading rates (0.1, 0.01, and 0.001 mm/s) are carried out on two kinds of full-graded dam concrete notched cubes with side lengths of 300 and 450 mm, respectively. Digital image correlation and acoustic emission technique are used to measure the deformation and acoustic emission parameters of the dam concrete. Test results show that: the peak load and fracture energy of dam concrete specimens increases with the increase of loading rate. And the higher the loading rate is, the fracture of concrete shows more obvious brittleness. Influenced by the boundary effect, the CTOD increases with the increasing of loading rate, however, the length of crack decreases as loading rate increases. With the loading rate increases, the energy mutation area is more obvious, while the accumulated acoustic emission energy is affected by both the loading rate and the maximum aggregate size. The number of acoustic emission three-dimensional locating points and the shear signal decrease with the increase of loading rate, which is attributed to that the faster the loading rate is, the less sufficient the development of micro cracks in concrete is. The test results can supply experimental data to the fracture mechanics of dam concrete.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247211038131\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247211038131","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The rate effect on fracture mechanics of dam concrete based on DIC and AE techniques
In order to study the effect of loading rate on fracture behavior of dam concrete, wedge splitting tests of various loading rates (0.1, 0.01, and 0.001 mm/s) are carried out on two kinds of full-graded dam concrete notched cubes with side lengths of 300 and 450 mm, respectively. Digital image correlation and acoustic emission technique are used to measure the deformation and acoustic emission parameters of the dam concrete. Test results show that: the peak load and fracture energy of dam concrete specimens increases with the increase of loading rate. And the higher the loading rate is, the fracture of concrete shows more obvious brittleness. Influenced by the boundary effect, the CTOD increases with the increasing of loading rate, however, the length of crack decreases as loading rate increases. With the loading rate increases, the energy mutation area is more obvious, while the accumulated acoustic emission energy is affected by both the loading rate and the maximum aggregate size. The number of acoustic emission three-dimensional locating points and the shear signal decrease with the increase of loading rate, which is attributed to that the faster the loading rate is, the less sufficient the development of micro cracks in concrete is. The test results can supply experimental data to the fracture mechanics of dam concrete.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).