基于DIC和声发射技术的坝混凝土断裂力学速率效应研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2021-08-06 DOI:10.1177/03093247211038131
Jingwu Bu, Xinyu Wu, Huiying Xu, Xudong Chen
{"title":"基于DIC和声发射技术的坝混凝土断裂力学速率效应研究","authors":"Jingwu Bu, Xinyu Wu, Huiying Xu, Xudong Chen","doi":"10.1177/03093247211038131","DOIUrl":null,"url":null,"abstract":"In order to study the effect of loading rate on fracture behavior of dam concrete, wedge splitting tests of various loading rates (0.1, 0.01, and 0.001 mm/s) are carried out on two kinds of full-graded dam concrete notched cubes with side lengths of 300 and 450 mm, respectively. Digital image correlation and acoustic emission technique are used to measure the deformation and acoustic emission parameters of the dam concrete. Test results show that: the peak load and fracture energy of dam concrete specimens increases with the increase of loading rate. And the higher the loading rate is, the fracture of concrete shows more obvious brittleness. Influenced by the boundary effect, the CTOD increases with the increasing of loading rate, however, the length of crack decreases as loading rate increases. With the loading rate increases, the energy mutation area is more obvious, while the accumulated acoustic emission energy is affected by both the loading rate and the maximum aggregate size. The number of acoustic emission three-dimensional locating points and the shear signal decrease with the increase of loading rate, which is attributed to that the faster the loading rate is, the less sufficient the development of micro cracks in concrete is. The test results can supply experimental data to the fracture mechanics of dam concrete.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The rate effect on fracture mechanics of dam concrete based on DIC and AE techniques\",\"authors\":\"Jingwu Bu, Xinyu Wu, Huiying Xu, Xudong Chen\",\"doi\":\"10.1177/03093247211038131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the effect of loading rate on fracture behavior of dam concrete, wedge splitting tests of various loading rates (0.1, 0.01, and 0.001 mm/s) are carried out on two kinds of full-graded dam concrete notched cubes with side lengths of 300 and 450 mm, respectively. Digital image correlation and acoustic emission technique are used to measure the deformation and acoustic emission parameters of the dam concrete. Test results show that: the peak load and fracture energy of dam concrete specimens increases with the increase of loading rate. And the higher the loading rate is, the fracture of concrete shows more obvious brittleness. Influenced by the boundary effect, the CTOD increases with the increasing of loading rate, however, the length of crack decreases as loading rate increases. With the loading rate increases, the energy mutation area is more obvious, while the accumulated acoustic emission energy is affected by both the loading rate and the maximum aggregate size. The number of acoustic emission three-dimensional locating points and the shear signal decrease with the increase of loading rate, which is attributed to that the faster the loading rate is, the less sufficient the development of micro cracks in concrete is. The test results can supply experimental data to the fracture mechanics of dam concrete.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247211038131\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247211038131","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 8

摘要

为了研究加载速率对大坝混凝土断裂行为的影响,对两种边长分别为300和450 mm的全级配坝混凝土缺口立方体进行了不同加载速率(0.1、0.01和0.001 mm/s)的楔形劈裂试验。采用数字图像相关和声发射技术测量大坝混凝土的变形和声发射参数。试验结果表明:随着加载速率的增加,大坝混凝土试件的峰值荷载和断裂能增大。加载速率越高,混凝土断裂表现出越明显的脆性。受边界效应影响,CTOD随加载速率的增加而增大,而裂纹长度随加载速率的增加而减小。随着加载速率的增加,能量突变区域更加明显,累积声发射能量同时受到加载速率和最大骨料粒径的影响。随着加载速率的增加,声发射三维定位点数和剪切信号数量减少,这是由于加载速率越快,混凝土微裂缝的发展越不充分。试验结果可为大坝混凝土的断裂力学提供实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The rate effect on fracture mechanics of dam concrete based on DIC and AE techniques
In order to study the effect of loading rate on fracture behavior of dam concrete, wedge splitting tests of various loading rates (0.1, 0.01, and 0.001 mm/s) are carried out on two kinds of full-graded dam concrete notched cubes with side lengths of 300 and 450 mm, respectively. Digital image correlation and acoustic emission technique are used to measure the deformation and acoustic emission parameters of the dam concrete. Test results show that: the peak load and fracture energy of dam concrete specimens increases with the increase of loading rate. And the higher the loading rate is, the fracture of concrete shows more obvious brittleness. Influenced by the boundary effect, the CTOD increases with the increasing of loading rate, however, the length of crack decreases as loading rate increases. With the loading rate increases, the energy mutation area is more obvious, while the accumulated acoustic emission energy is affected by both the loading rate and the maximum aggregate size. The number of acoustic emission three-dimensional locating points and the shear signal decrease with the increase of loading rate, which is attributed to that the faster the loading rate is, the less sufficient the development of micro cracks in concrete is. The test results can supply experimental data to the fracture mechanics of dam concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1