{"title":"可调谐超低电压跨导放大器和GmC滤波器","authors":"Øivind Næss, Y. Berg","doi":"10.1109/ISCAS.2000.856427","DOIUrl":null,"url":null,"abstract":"This paper presents a fully differential dual-ended ultralow-voltage (ULV) FGUVMOS operational transconductance amplifier (FGUVMOS-OTA), and a Gm-C filter where the FGUVMOS-OTA is used. The OTA has no internal nodes, rail-to-rail operation and dynamic load. The cut-off frequency of the Gm-C filter is tunable over more than 5 decades. The circuits may be operated with supply voltages down to 200 mV.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Tunable ultralow voltage transconductance amplifier and GmC filter\",\"authors\":\"Øivind Næss, Y. Berg\",\"doi\":\"10.1109/ISCAS.2000.856427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fully differential dual-ended ultralow-voltage (ULV) FGUVMOS operational transconductance amplifier (FGUVMOS-OTA), and a Gm-C filter where the FGUVMOS-OTA is used. The OTA has no internal nodes, rail-to-rail operation and dynamic load. The cut-off frequency of the Gm-C filter is tunable over more than 5 decades. The circuits may be operated with supply voltages down to 200 mV.\",\"PeriodicalId\":6422,\"journal\":{\"name\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2000.856427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.856427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tunable ultralow voltage transconductance amplifier and GmC filter
This paper presents a fully differential dual-ended ultralow-voltage (ULV) FGUVMOS operational transconductance amplifier (FGUVMOS-OTA), and a Gm-C filter where the FGUVMOS-OTA is used. The OTA has no internal nodes, rail-to-rail operation and dynamic load. The cut-off frequency of the Gm-C filter is tunable over more than 5 decades. The circuits may be operated with supply voltages down to 200 mV.