Cen Gao, S. Yao, Jiangtao Xu, Jing Gao, Kaiming Nie
{"title":"延时集成CMOS图像传感器中电流蓄能器的噪声分析","authors":"Cen Gao, S. Yao, Jiangtao Xu, Jing Gao, Kaiming Nie","doi":"10.1109/EDSSC.2011.6117724","DOIUrl":null,"url":null,"abstract":"The noise of the current accumulator is analyzed. And a model of Time-Delay-Integration (TDI) CMOS image sensor is presented, which is used to analyze the noise performance. In this model, input signals are accumulated 4 times by the type of current and then converted to digital signals to accomplish the other accumulation by 32 times, i.e., 4×32 accumulation mode. The noise, which includes switch charge injection, sample noise and KT/C noise, is considered in this model. The major source of the noise and the relationship between noise and sample capacitance are evaluated through the model simulation. The results indicate that the total noise can be restrained by increasing sample capacitance. When the input signal is arranging from 0µA to 100µA, the accuracy of the current accumulator can be 11bits by using 1pF sample capacitor. And the SNR of the output signal can be increased by 20.38dB which is close to the ideal result.","PeriodicalId":6363,"journal":{"name":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of noise of current accumulator in Time-Delay-Integration CMOS image sensor\",\"authors\":\"Cen Gao, S. Yao, Jiangtao Xu, Jing Gao, Kaiming Nie\",\"doi\":\"10.1109/EDSSC.2011.6117724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The noise of the current accumulator is analyzed. And a model of Time-Delay-Integration (TDI) CMOS image sensor is presented, which is used to analyze the noise performance. In this model, input signals are accumulated 4 times by the type of current and then converted to digital signals to accomplish the other accumulation by 32 times, i.e., 4×32 accumulation mode. The noise, which includes switch charge injection, sample noise and KT/C noise, is considered in this model. The major source of the noise and the relationship between noise and sample capacitance are evaluated through the model simulation. The results indicate that the total noise can be restrained by increasing sample capacitance. When the input signal is arranging from 0µA to 100µA, the accuracy of the current accumulator can be 11bits by using 1pF sample capacitor. And the SNR of the output signal can be increased by 20.38dB which is close to the ideal result.\",\"PeriodicalId\":6363,\"journal\":{\"name\":\"2011 IEEE International Conference of Electron Devices and Solid-State Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference of Electron Devices and Solid-State Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2011.6117724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2011.6117724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of noise of current accumulator in Time-Delay-Integration CMOS image sensor
The noise of the current accumulator is analyzed. And a model of Time-Delay-Integration (TDI) CMOS image sensor is presented, which is used to analyze the noise performance. In this model, input signals are accumulated 4 times by the type of current and then converted to digital signals to accomplish the other accumulation by 32 times, i.e., 4×32 accumulation mode. The noise, which includes switch charge injection, sample noise and KT/C noise, is considered in this model. The major source of the noise and the relationship between noise and sample capacitance are evaluated through the model simulation. The results indicate that the total noise can be restrained by increasing sample capacitance. When the input signal is arranging from 0µA to 100µA, the accuracy of the current accumulator can be 11bits by using 1pF sample capacitor. And the SNR of the output signal can be increased by 20.38dB which is close to the ideal result.