基于cp核范数的张量秩估计与补全

Qiquan Shi, Haiping Lu, Yiu-ming Cheung
{"title":"基于cp核范数的张量秩估计与补全","authors":"Qiquan Shi, Haiping Lu, Yiu-ming Cheung","doi":"10.1145/3132847.3132945","DOIUrl":null,"url":null,"abstract":"Tensor completion (TC) is a challenging problem of recovering missing entries of a tensor from its partial observation. One main TC approach is based on CP/Tucker decomposition. However, this approach often requires the determination of a tensor rank a priori. This rank estimation problem is difficult in practice. Several Bayesian solutions have been proposed but they often under/over-estimate the tensor rank while being quite slow. To address this problem of rank estimation with missing entries, we view the weight vector of the orthogonal CP decomposition of a tensor to be analogous to the vector of singular values of a matrix. Subsequently, we define a new CP-based tensor nuclear norm as the $L_1$-norm of this weight vector. We then propose Tensor Rank Estimation based on $L_1$-regularized orthogonal CP decomposition (TREL1) for both CP-rank and Tucker-rank. Specifically, we incorporate a regularization with CP-based tensor nuclear norm when minimizing the reconstruction error in TC to automatically determine the rank of an incomplete tensor. Experimental results on both synthetic and real data show that: 1) Given sufficient observed entries, TREL1 can estimate the true rank (both CP-rank and Tucker-rank) of incomplete tensors well; 2) The rank estimated by TREL1 can consistently improve recovery accuracy of decomposition-based TC methods; 3) TREL1 is not sensitive to its parameters in general and more efficient than existing rank estimation methods.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Tensor Rank Estimation and Completion via CP-based Nuclear Norm\",\"authors\":\"Qiquan Shi, Haiping Lu, Yiu-ming Cheung\",\"doi\":\"10.1145/3132847.3132945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor completion (TC) is a challenging problem of recovering missing entries of a tensor from its partial observation. One main TC approach is based on CP/Tucker decomposition. However, this approach often requires the determination of a tensor rank a priori. This rank estimation problem is difficult in practice. Several Bayesian solutions have been proposed but they often under/over-estimate the tensor rank while being quite slow. To address this problem of rank estimation with missing entries, we view the weight vector of the orthogonal CP decomposition of a tensor to be analogous to the vector of singular values of a matrix. Subsequently, we define a new CP-based tensor nuclear norm as the $L_1$-norm of this weight vector. We then propose Tensor Rank Estimation based on $L_1$-regularized orthogonal CP decomposition (TREL1) for both CP-rank and Tucker-rank. Specifically, we incorporate a regularization with CP-based tensor nuclear norm when minimizing the reconstruction error in TC to automatically determine the rank of an incomplete tensor. Experimental results on both synthetic and real data show that: 1) Given sufficient observed entries, TREL1 can estimate the true rank (both CP-rank and Tucker-rank) of incomplete tensors well; 2) The rank estimated by TREL1 can consistently improve recovery accuracy of decomposition-based TC methods; 3) TREL1 is not sensitive to its parameters in general and more efficient than existing rank estimation methods.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3132945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

张量补全(TC)是一个具有挑战性的问题,从张量的部分观测中恢复缺项。一种主要的TC方法是基于CP/Tucker分解。然而,这种方法通常需要先验地确定张量秩。这种秩估计问题在实践中比较困难。已经提出了几个贝叶斯解决方案,但它们经常低估/高估张量秩,而且速度很慢。为了解决这个缺项秩估计的问题,我们将张量的正交CP分解的权向量看作类似于矩阵的奇异值向量。随后,我们定义了一个新的基于cp的张量核范数作为这个权向量的L_1范数。然后,我们提出了基于$L_1$正则化正交CP分解(TREL1)的张量秩估计,用于CP- Rank和Tucker-rank。具体来说,我们在最小化TC中的重构误差时,将正则化与基于cp的张量核范数相结合,以自动确定不完整张量的秩。在合成数据和真实数据上的实验结果表明:1)在给定足够的观测条目的情况下,TREL1可以很好地估计不完全张量的真秩(CP-rank和Tucker-rank);2) TREL1估计的秩能持续提高基于分解的TC方法的恢复精度;3) TREL1总体上对参数不敏感,比现有的秩估计方法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensor Rank Estimation and Completion via CP-based Nuclear Norm
Tensor completion (TC) is a challenging problem of recovering missing entries of a tensor from its partial observation. One main TC approach is based on CP/Tucker decomposition. However, this approach often requires the determination of a tensor rank a priori. This rank estimation problem is difficult in practice. Several Bayesian solutions have been proposed but they often under/over-estimate the tensor rank while being quite slow. To address this problem of rank estimation with missing entries, we view the weight vector of the orthogonal CP decomposition of a tensor to be analogous to the vector of singular values of a matrix. Subsequently, we define a new CP-based tensor nuclear norm as the $L_1$-norm of this weight vector. We then propose Tensor Rank Estimation based on $L_1$-regularized orthogonal CP decomposition (TREL1) for both CP-rank and Tucker-rank. Specifically, we incorporate a regularization with CP-based tensor nuclear norm when minimizing the reconstruction error in TC to automatically determine the rank of an incomplete tensor. Experimental results on both synthetic and real data show that: 1) Given sufficient observed entries, TREL1 can estimate the true rank (both CP-rank and Tucker-rank) of incomplete tensors well; 2) The rank estimated by TREL1 can consistently improve recovery accuracy of decomposition-based TC methods; 3) TREL1 is not sensitive to its parameters in general and more efficient than existing rank estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query and Animate Multi-attribute Trajectory Data HyPerInsight: Data Exploration Deep Inside HyPer Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable? NeuPL: Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation Health Forum Thread Recommendation Using an Interest Aware Topic Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1