{"title":"纳米氧化钇稳定氧化锆对Ni-20Cr复合镀层性能的影响","authors":"Sukhjinderjit Singh, K. Goyal, R. Bhatia","doi":"10.5599/jese.1319","DOIUrl":null,"url":null,"abstract":"In the present work, 5 wt.% and 10 wt.% yttria-stabilized zirconia (YSZ) nanoparticles were reinforced in Ni-20Cr powder and deposited on boiler tube steel using a high-velocity oxy-fuel spraying process. The effect of YSZ reinforcement on microhardness, surface roughness and porosity was investigated. The hardness was the highest for nanocomposite coating reinforced with 10 wt.% YSZ and hardness was found to increase with a decrease in porosity. The coating microstructure and elements were characterized using field emission scanning electron microscopy (FE-SEM) with an energy dispersive spectroscope (EDS). The constituents of the coating were identified using X-ray diffractometer. It was found that the composite coating with 10 wt.% YSZ reinforced nanocomposite coating has the highest microhardness, in the range of 1008-1055 hv. During the coating process, nano YSZ particles were dispersed in the gaps between the micrometric Ni-20Cr particles, providing a better coating matrix than conventional Ni-20Cr. The Ni-20Cr with 10 wt.% of YSZ nanoparticles showed better results in terms of mechanical and microstructural properties during the investigation.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"34 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of nano yttria-stabilized zirconia on properties of Ni-20Cr composite coatings\",\"authors\":\"Sukhjinderjit Singh, K. Goyal, R. Bhatia\",\"doi\":\"10.5599/jese.1319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, 5 wt.% and 10 wt.% yttria-stabilized zirconia (YSZ) nanoparticles were reinforced in Ni-20Cr powder and deposited on boiler tube steel using a high-velocity oxy-fuel spraying process. The effect of YSZ reinforcement on microhardness, surface roughness and porosity was investigated. The hardness was the highest for nanocomposite coating reinforced with 10 wt.% YSZ and hardness was found to increase with a decrease in porosity. The coating microstructure and elements were characterized using field emission scanning electron microscopy (FE-SEM) with an energy dispersive spectroscope (EDS). The constituents of the coating were identified using X-ray diffractometer. It was found that the composite coating with 10 wt.% YSZ reinforced nanocomposite coating has the highest microhardness, in the range of 1008-1055 hv. During the coating process, nano YSZ particles were dispersed in the gaps between the micrometric Ni-20Cr particles, providing a better coating matrix than conventional Ni-20Cr. The Ni-20Cr with 10 wt.% of YSZ nanoparticles showed better results in terms of mechanical and microstructural properties during the investigation.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Effect of nano yttria-stabilized zirconia on properties of Ni-20Cr composite coatings
In the present work, 5 wt.% and 10 wt.% yttria-stabilized zirconia (YSZ) nanoparticles were reinforced in Ni-20Cr powder and deposited on boiler tube steel using a high-velocity oxy-fuel spraying process. The effect of YSZ reinforcement on microhardness, surface roughness and porosity was investigated. The hardness was the highest for nanocomposite coating reinforced with 10 wt.% YSZ and hardness was found to increase with a decrease in porosity. The coating microstructure and elements were characterized using field emission scanning electron microscopy (FE-SEM) with an energy dispersive spectroscope (EDS). The constituents of the coating were identified using X-ray diffractometer. It was found that the composite coating with 10 wt.% YSZ reinforced nanocomposite coating has the highest microhardness, in the range of 1008-1055 hv. During the coating process, nano YSZ particles were dispersed in the gaps between the micrometric Ni-20Cr particles, providing a better coating matrix than conventional Ni-20Cr. The Ni-20Cr with 10 wt.% of YSZ nanoparticles showed better results in terms of mechanical and microstructural properties during the investigation.