{"title":"18.5 fj /step VCO-based 0-1 MASH ΔΣ数字背景校准ADC","authors":"A. Sanyal, Nan Sun","doi":"10.1109/VLSIC.2016.7573465","DOIUrl":null,"url":null,"abstract":"A scaling-friendly and energy-efficient 0-1 MASH ΔΣ ADC is proposed in this work. An 8b SAR is used as the 1st stage for coarse quantization. A ring VCO is used as the 2nd stage for fine quantization. The proposed ADC uses digital background calibration to track VCO gain variation across PVT. A 40nm CMOS prototype achieves a Walden FoM of 18.5 fJ/conv-step while operating from 1.1V supply.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"119 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A 18.5-fJ/step VCO-based 0–1 MASH ΔΣ ADC with digital background calibration\",\"authors\":\"A. Sanyal, Nan Sun\",\"doi\":\"10.1109/VLSIC.2016.7573465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scaling-friendly and energy-efficient 0-1 MASH ΔΣ ADC is proposed in this work. An 8b SAR is used as the 1st stage for coarse quantization. A ring VCO is used as the 2nd stage for fine quantization. The proposed ADC uses digital background calibration to track VCO gain variation across PVT. A 40nm CMOS prototype achieves a Walden FoM of 18.5 fJ/conv-step while operating from 1.1V supply.\",\"PeriodicalId\":6512,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"volume\":\"119 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2016.7573465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 18.5-fJ/step VCO-based 0–1 MASH ΔΣ ADC with digital background calibration
A scaling-friendly and energy-efficient 0-1 MASH ΔΣ ADC is proposed in this work. An 8b SAR is used as the 1st stage for coarse quantization. A ring VCO is used as the 2nd stage for fine quantization. The proposed ADC uses digital background calibration to track VCO gain variation across PVT. A 40nm CMOS prototype achieves a Walden FoM of 18.5 fJ/conv-step while operating from 1.1V supply.