{"title":"求解耦合输运方程组的不动点和静止点法","authors":"D. Sangare","doi":"10.1155/2022/2705591","DOIUrl":null,"url":null,"abstract":"In this paper, a coupled system of two transport equations is studied. The techniques are a fixed-point and Space-Time Integrated Least Square (STILS) method. The nonstationary advective transport equation is transformed to a “stationary” one by integrating space and time. Using a variational formulation and an adequate Poincare inequality, we prove the existence and the uniqueness of the solution. The transport equation with a nonlinear feedback is solved using a fixed-point method.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"1 1","pages":"2705591:1-2705591:6"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-Point and STILS Method to Solve a Coupled System of Transport Equations\",\"authors\":\"D. Sangare\",\"doi\":\"10.1155/2022/2705591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a coupled system of two transport equations is studied. The techniques are a fixed-point and Space-Time Integrated Least Square (STILS) method. The nonstationary advective transport equation is transformed to a “stationary” one by integrating space and time. Using a variational formulation and an adequate Poincare inequality, we prove the existence and the uniqueness of the solution. The transport equation with a nonlinear feedback is solved using a fixed-point method.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"1 1\",\"pages\":\"2705591:1-2705591:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2705591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2705591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fixed-Point and STILS Method to Solve a Coupled System of Transport Equations
In this paper, a coupled system of two transport equations is studied. The techniques are a fixed-point and Space-Time Integrated Least Square (STILS) method. The nonstationary advective transport equation is transformed to a “stationary” one by integrating space and time. Using a variational formulation and an adequate Poincare inequality, we prove the existence and the uniqueness of the solution. The transport equation with a nonlinear feedback is solved using a fixed-point method.