基于自评估和增益调度的质子交换膜水电解槽自调谐控制

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Dynamic Systems Measurement and Control-Transactions of the Asme Pub Date : 2021-05-01 DOI:10.1115/1.4049365
A. Keow, Zheng Chen
{"title":"基于自评估和增益调度的质子交换膜水电解槽自调谐控制","authors":"A. Keow, Zheng Chen","doi":"10.1115/1.4049365","DOIUrl":null,"url":null,"abstract":"\n Proton exchange membrane (PEM) electrolyzer can produce gases at the pressure suitable for direct storage into metal hydride cylinders, bypassing compressors, and other auxiliary components. For direct storage into metal hydride containers, hydrogen gas's pressure and flowrate must be well controlled. However, the PEM electrolyzer's time-variant and nonlinear dynamics call for an adaptive control to maintain its output performance. Therefore, in this paper, a model-free relay-feedback autotuning approach is proposed to tune a proportional-integral (PI) controller online. The controller determines the voltage supply to the electrolyzer to track a certain current setpoint, which corresponds to a constant hydrogen production rate. A gain scheduling approach is developed to pick up the right controller gain at different setpoints, minimizing the tuning frequency. A self-assessment algorithm is developed to determine the situations where the autotuner should activate to update the PI parameters, thus allowing the control system to be tuned autonomously. The autotuning PI control is successfully tested with a PEM electrolyzer setup. Experiment results showed that autotuner with gain scheduling could tune the controller parameters producing a desired transient behavior and is adaptive to the variations in setpoint and operating conditions.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"8 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Auto-Tuning Control of Proton Exchange Membrane Water Electrolyzer With Self-Assessment and Gain Scheduling\",\"authors\":\"A. Keow, Zheng Chen\",\"doi\":\"10.1115/1.4049365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Proton exchange membrane (PEM) electrolyzer can produce gases at the pressure suitable for direct storage into metal hydride cylinders, bypassing compressors, and other auxiliary components. For direct storage into metal hydride containers, hydrogen gas's pressure and flowrate must be well controlled. However, the PEM electrolyzer's time-variant and nonlinear dynamics call for an adaptive control to maintain its output performance. Therefore, in this paper, a model-free relay-feedback autotuning approach is proposed to tune a proportional-integral (PI) controller online. The controller determines the voltage supply to the electrolyzer to track a certain current setpoint, which corresponds to a constant hydrogen production rate. A gain scheduling approach is developed to pick up the right controller gain at different setpoints, minimizing the tuning frequency. A self-assessment algorithm is developed to determine the situations where the autotuner should activate to update the PI parameters, thus allowing the control system to be tuned autonomously. The autotuning PI control is successfully tested with a PEM electrolyzer setup. Experiment results showed that autotuner with gain scheduling could tune the controller parameters producing a desired transient behavior and is adaptive to the variations in setpoint and operating conditions.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4049365\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049365","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

质子交换膜(PEM)电解槽可以在合适的压力下产生气体,直接储存到金属氢化物钢瓶中,绕过压缩机和其他辅助部件。为了直接储存在金属氢化物容器中,必须很好地控制氢气的压力和流量。然而,PEM电解槽的时变和非线性动力学要求自适应控制来保持其输出性能。因此,本文提出了一种无模型继电器反馈自整定方法来在线整定比例积分(PI)控制器。控制器确定电解槽的电压供应,以跟踪某个电流设定值,这对应于恒定的制氢速率。提出了一种增益调度方法,在不同的设定值处提取正确的控制器增益,使调谐频率最小。开发了一种自评估算法来确定应激活自调谐器以更新PI参数的情况,从而使控制系统能够自主调谐。通过PEM电解槽设置成功地测试了自整定PI控制。实验结果表明,具有增益调度的自调谐器能够对控制器参数进行调谐,使其产生理想的暂态行为,并能适应设定值和工作条件的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Auto-Tuning Control of Proton Exchange Membrane Water Electrolyzer With Self-Assessment and Gain Scheduling
Proton exchange membrane (PEM) electrolyzer can produce gases at the pressure suitable for direct storage into metal hydride cylinders, bypassing compressors, and other auxiliary components. For direct storage into metal hydride containers, hydrogen gas's pressure and flowrate must be well controlled. However, the PEM electrolyzer's time-variant and nonlinear dynamics call for an adaptive control to maintain its output performance. Therefore, in this paper, a model-free relay-feedback autotuning approach is proposed to tune a proportional-integral (PI) controller online. The controller determines the voltage supply to the electrolyzer to track a certain current setpoint, which corresponds to a constant hydrogen production rate. A gain scheduling approach is developed to pick up the right controller gain at different setpoints, minimizing the tuning frequency. A self-assessment algorithm is developed to determine the situations where the autotuner should activate to update the PI parameters, thus allowing the control system to be tuned autonomously. The autotuning PI control is successfully tested with a PEM electrolyzer setup. Experiment results showed that autotuner with gain scheduling could tune the controller parameters producing a desired transient behavior and is adaptive to the variations in setpoint and operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
期刊最新文献
Spiking-Free Disturbance Observer-Based Sliding-Mode Control for Mismatched Uncertain System Current Imbalance in Dissimilar Parallel-Connected Batteries and the Fate of Degradation Convergence Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1