使用alpha-beta-core的高效容错组推荐

Danhao Ding, Hui Li, Zhipeng Huang, N. Mamoulis
{"title":"使用alpha-beta-core的高效容错组推荐","authors":"Danhao Ding, Hui Li, Zhipeng Huang, N. Mamoulis","doi":"10.1145/3132847.3133130","DOIUrl":null,"url":null,"abstract":"Fault-tolerant group recommendation systems based on subspace clustering successfully alleviate high-dimensionality and sparsity problems. However, the cost of recommendation grows exponentially with the size of dataset. To address this issue, we model the fault-tolerant subspace clustering problem as a search problem on graphs and present an algorithm, GraphRec, based on the concept of α-ß-core. Moreover, we propose two variants of our approach that use indexes to improve query latency. Our experiments on different datasets demonstrate that our methods are extremely fast compared to the state-of-the-art.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Efficient Fault-Tolerant Group Recommendation Using alpha-beta-core\",\"authors\":\"Danhao Ding, Hui Li, Zhipeng Huang, N. Mamoulis\",\"doi\":\"10.1145/3132847.3133130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault-tolerant group recommendation systems based on subspace clustering successfully alleviate high-dimensionality and sparsity problems. However, the cost of recommendation grows exponentially with the size of dataset. To address this issue, we model the fault-tolerant subspace clustering problem as a search problem on graphs and present an algorithm, GraphRec, based on the concept of α-ß-core. Moreover, we propose two variants of our approach that use indexes to improve query latency. Our experiments on different datasets demonstrate that our methods are extremely fast compared to the state-of-the-art.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3133130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

基于子空间聚类的容错群推荐系统成功地解决了高维稀疏问题。然而,推荐的成本随着数据集的大小呈指数增长。为了解决这个问题,我们将容错子空间聚类问题建模为图上的搜索问题,并提出了一种基于α-ß-core概念的算法GraphRec。此外,我们提出了我们的方法的两个变体,它们使用索引来改善查询延迟。我们在不同数据集上的实验表明,与最先进的方法相比,我们的方法非常快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Fault-Tolerant Group Recommendation Using alpha-beta-core
Fault-tolerant group recommendation systems based on subspace clustering successfully alleviate high-dimensionality and sparsity problems. However, the cost of recommendation grows exponentially with the size of dataset. To address this issue, we model the fault-tolerant subspace clustering problem as a search problem on graphs and present an algorithm, GraphRec, based on the concept of α-ß-core. Moreover, we propose two variants of our approach that use indexes to improve query latency. Our experiments on different datasets demonstrate that our methods are extremely fast compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query and Animate Multi-attribute Trajectory Data HyPerInsight: Data Exploration Deep Inside HyPer Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable? NeuPL: Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation Health Forum Thread Recommendation Using an Interest Aware Topic Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1