基于卷积神经网络-长短期记忆的风速和风向预测模型

Anggraini Puspita Sari, Hiroshi Suzuki, T. Kitajima, T. Yasuno, D. A. Prasetya, Nachrowie Nachrowie
{"title":"基于卷积神经网络-长短期记忆的风速和风向预测模型","authors":"Anggraini Puspita Sari, Hiroshi Suzuki, T. Kitajima, T. Yasuno, D. A. Prasetya, Nachrowie Nachrowie","doi":"10.1109/PECon48942.2020.9314474","DOIUrl":null,"url":null,"abstract":"This paper proposes the prediction model of wind speed and direction using convolutional neural network - long short-term memory (CNN-LSTM). The proposed prediction model combines CNN, LSTM, and fully connected neural networks (FCNN) which are useful for getting high prediction accuracy of wind speed and direction for wind power. Performances of the prediction models are evaluated by using root mean square error (RMSE) between actual measurement data and predicted data. To verify the effectiveness of the proposed prediction model in comparison with that using FCNN, CNN, or LSTM model. The usefulness of the proposed prediction model is evaluated from the improvement of prediction accuracy for each season. The proposed prediction model using CNN-LSTM can improve 27.95 – 42.16% for wind speed and 28.71 – 35.15% for wind direction depending on the season in comparison with using the FCNN that is a higher accuracy than CNN and LSTM models, and also it indicates the strongest prediction model.","PeriodicalId":6768,"journal":{"name":"2020 IEEE International Conference on Power and Energy (PECon)","volume":"187 1","pages":"356-361"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Prediction Model of Wind Speed and Direction using Convolutional Neural Network - Long Short Term Memory\",\"authors\":\"Anggraini Puspita Sari, Hiroshi Suzuki, T. Kitajima, T. Yasuno, D. A. Prasetya, Nachrowie Nachrowie\",\"doi\":\"10.1109/PECon48942.2020.9314474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the prediction model of wind speed and direction using convolutional neural network - long short-term memory (CNN-LSTM). The proposed prediction model combines CNN, LSTM, and fully connected neural networks (FCNN) which are useful for getting high prediction accuracy of wind speed and direction for wind power. Performances of the prediction models are evaluated by using root mean square error (RMSE) between actual measurement data and predicted data. To verify the effectiveness of the proposed prediction model in comparison with that using FCNN, CNN, or LSTM model. The usefulness of the proposed prediction model is evaluated from the improvement of prediction accuracy for each season. The proposed prediction model using CNN-LSTM can improve 27.95 – 42.16% for wind speed and 28.71 – 35.15% for wind direction depending on the season in comparison with using the FCNN that is a higher accuracy than CNN and LSTM models, and also it indicates the strongest prediction model.\",\"PeriodicalId\":6768,\"journal\":{\"name\":\"2020 IEEE International Conference on Power and Energy (PECon)\",\"volume\":\"187 1\",\"pages\":\"356-361\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Power and Energy (PECon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECon48942.2020.9314474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECon48942.2020.9314474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于卷积神经网络-长短期记忆(CNN-LSTM)的风速和风向预测模型。该预测模型结合了CNN、LSTM和全连接神经网络(FCNN),有助于获得较高的风速和风向预测精度。用实际测量数据与预测数据的均方根误差(RMSE)来评价预测模型的性能。为了验证所提出的预测模型与使用FCNN、CNN或LSTM模型的预测模型的有效性。从各季节预测精度的提高来评价所提出的预测模型的有效性。与使用FCNN模型相比,使用CNN-LSTM的预测模型对风速和风向随季节变化的预测精度分别提高了27.95 ~ 42.16%和28.71 ~ 35.15%,精度高于CNN和LSTM模型,是最强的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction Model of Wind Speed and Direction using Convolutional Neural Network - Long Short Term Memory
This paper proposes the prediction model of wind speed and direction using convolutional neural network - long short-term memory (CNN-LSTM). The proposed prediction model combines CNN, LSTM, and fully connected neural networks (FCNN) which are useful for getting high prediction accuracy of wind speed and direction for wind power. Performances of the prediction models are evaluated by using root mean square error (RMSE) between actual measurement data and predicted data. To verify the effectiveness of the proposed prediction model in comparison with that using FCNN, CNN, or LSTM model. The usefulness of the proposed prediction model is evaluated from the improvement of prediction accuracy for each season. The proposed prediction model using CNN-LSTM can improve 27.95 – 42.16% for wind speed and 28.71 – 35.15% for wind direction depending on the season in comparison with using the FCNN that is a higher accuracy than CNN and LSTM models, and also it indicates the strongest prediction model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment The Overall Health Condition of Transformer Using Health Index and Critical Index Approach: TNB Grid Case Study Buck Converter Design for Photovoltaic Emulator Application A Review of High-Frequency Transformers for Bidirectional Isolated DC-DC Converters Implementation of a Robust Hydrogen-based Grid System to Enhance Power Quality Design Modifications for Cogging Force Reduction in Linear Permanent Magnet Machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1