{"title":"连续液界面生产增材制造六方晶格结构的力学性能","authors":"Davis J. McGregor, Sameh Tawfick, William P. King","doi":"10.1016/j.addma.2018.11.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Additive manufacturing (AM) is a key enabler for architectured </span>lattice materials<span>, because of the geometric complexity of parts that can be produced. Recent advancements in AM have enabled rapid production speeds, high spatial resolution, and a variety of engineering polymers. An open question remains whether production grade AM can accurately and repeatably produce lattice parts. This study presents design, production, and mechanical property testing of hexagonal lattice parts manufactured using continuous </span></span>liquid interface<span> production (CLIP) based AM. We printed and tested 84 parts, in three polymer materials having relative density ranging from 0.06 to 0.23. Lattice wall structures were reliably printed when truss aspect ratio was in the range 5 to 20 and wall thicknesses were 0.35 or 0.5 mm. The printed lattice parts, each comprising hundreds of slender walls, were measured using high resolution optical scanning. The images were analyzed to evaluate the difference between the printed parts and their designs, and the effect of geometric deviations on the </span></span>mechanical behavior<span><span>. The measured elastic moduli of the printed parts are close to the values expected from the materials specifications. The measured </span>strength of the printed parts deviates by 7% from the behavior predicted from the scanned geometry. The failure mode of the printed structures depends upon the material and part geometry. To our knowledge, this is the largest study on the accuracy and performance of AM lattice parts, and the first study of its type for lattice parts made using CLIP.</span></p></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.addma.2018.11.002","citationCount":"43","resultStr":"{\"title\":\"Mechanical properties of hexagonal lattice structures fabricated using continuous liquid interface production additive manufacturing\",\"authors\":\"Davis J. McGregor, Sameh Tawfick, William P. King\",\"doi\":\"10.1016/j.addma.2018.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Additive manufacturing (AM) is a key enabler for architectured </span>lattice materials<span>, because of the geometric complexity of parts that can be produced. Recent advancements in AM have enabled rapid production speeds, high spatial resolution, and a variety of engineering polymers. An open question remains whether production grade AM can accurately and repeatably produce lattice parts. This study presents design, production, and mechanical property testing of hexagonal lattice parts manufactured using continuous </span></span>liquid interface<span> production (CLIP) based AM. We printed and tested 84 parts, in three polymer materials having relative density ranging from 0.06 to 0.23. Lattice wall structures were reliably printed when truss aspect ratio was in the range 5 to 20 and wall thicknesses were 0.35 or 0.5 mm. The printed lattice parts, each comprising hundreds of slender walls, were measured using high resolution optical scanning. The images were analyzed to evaluate the difference between the printed parts and their designs, and the effect of geometric deviations on the </span></span>mechanical behavior<span><span>. The measured elastic moduli of the printed parts are close to the values expected from the materials specifications. The measured </span>strength of the printed parts deviates by 7% from the behavior predicted from the scanned geometry. The failure mode of the printed structures depends upon the material and part geometry. To our knowledge, this is the largest study on the accuracy and performance of AM lattice parts, and the first study of its type for lattice parts made using CLIP.</span></p></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.addma.2018.11.002\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860418307413\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860418307413","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Mechanical properties of hexagonal lattice structures fabricated using continuous liquid interface production additive manufacturing
Additive manufacturing (AM) is a key enabler for architectured lattice materials, because of the geometric complexity of parts that can be produced. Recent advancements in AM have enabled rapid production speeds, high spatial resolution, and a variety of engineering polymers. An open question remains whether production grade AM can accurately and repeatably produce lattice parts. This study presents design, production, and mechanical property testing of hexagonal lattice parts manufactured using continuous liquid interface production (CLIP) based AM. We printed and tested 84 parts, in three polymer materials having relative density ranging from 0.06 to 0.23. Lattice wall structures were reliably printed when truss aspect ratio was in the range 5 to 20 and wall thicknesses were 0.35 or 0.5 mm. The printed lattice parts, each comprising hundreds of slender walls, were measured using high resolution optical scanning. The images were analyzed to evaluate the difference between the printed parts and their designs, and the effect of geometric deviations on the mechanical behavior. The measured elastic moduli of the printed parts are close to the values expected from the materials specifications. The measured strength of the printed parts deviates by 7% from the behavior predicted from the scanned geometry. The failure mode of the printed structures depends upon the material and part geometry. To our knowledge, this is the largest study on the accuracy and performance of AM lattice parts, and the first study of its type for lattice parts made using CLIP.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.