{"title":"螺旋桨螺距对船舶推进力的影响","authors":"D. Ozturk, C. Delen, S. E. Belhenniche, O. Kinaci","doi":"10.7225/toms.v11.n01.w09","DOIUrl":null,"url":null,"abstract":"The appropriate choice of a marine engine identified by using self-propulsion model tests is compulsory, in particular with respect to the improvement of vessel performances. Numerical simulations or experimental methods provide insight into the problem of flow, where fixed pitch propellers or controllable pitch propellers are preferred. While calculation methods are time consuming and computationally demanding for both propeller types, hydrodynamic performance assessment has more workload in controllable pitch propellers. This paper aims to describe and demonstrate the practicability and effectiveness of the self-propulsion estimation (SPE) method in understanding the effect of propeller pitch on ship propulsion. Technically, the hydrostatic and geometric characteristics of the vessel and open-water propeller performances are the focal aspects that affect the self-propulsion parameters estimated by the SPE method. The input coefficients for SPE have been identified using a code that generates propeller open-water performance curves. The propellers utilized to study pitch variations have been based on the Wageningen B-series propeller database. The method was first validated on the full size Seiun Maru ship whose sea trial tests are available in literature. After extensive calculations for full size KCS and DTC at service speeds, the study focused on the effect of the Froude number on propulsion parameters. These calculations have demonstrated that greater propeller pitch does not improve propulsion efficiency, and that maximum propeller efficiency changes with a ship's forward speed.","PeriodicalId":42576,"journal":{"name":"Transactions on Maritime Science-ToMS","volume":"28 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Propeller Pitch on Ship Propulsion\",\"authors\":\"D. Ozturk, C. Delen, S. E. Belhenniche, O. Kinaci\",\"doi\":\"10.7225/toms.v11.n01.w09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The appropriate choice of a marine engine identified by using self-propulsion model tests is compulsory, in particular with respect to the improvement of vessel performances. Numerical simulations or experimental methods provide insight into the problem of flow, where fixed pitch propellers or controllable pitch propellers are preferred. While calculation methods are time consuming and computationally demanding for both propeller types, hydrodynamic performance assessment has more workload in controllable pitch propellers. This paper aims to describe and demonstrate the practicability and effectiveness of the self-propulsion estimation (SPE) method in understanding the effect of propeller pitch on ship propulsion. Technically, the hydrostatic and geometric characteristics of the vessel and open-water propeller performances are the focal aspects that affect the self-propulsion parameters estimated by the SPE method. The input coefficients for SPE have been identified using a code that generates propeller open-water performance curves. The propellers utilized to study pitch variations have been based on the Wageningen B-series propeller database. The method was first validated on the full size Seiun Maru ship whose sea trial tests are available in literature. After extensive calculations for full size KCS and DTC at service speeds, the study focused on the effect of the Froude number on propulsion parameters. These calculations have demonstrated that greater propeller pitch does not improve propulsion efficiency, and that maximum propeller efficiency changes with a ship's forward speed.\",\"PeriodicalId\":42576,\"journal\":{\"name\":\"Transactions on Maritime Science-ToMS\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Maritime Science-ToMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7225/toms.v11.n01.w09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Maritime Science-ToMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7225/toms.v11.n01.w09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
The appropriate choice of a marine engine identified by using self-propulsion model tests is compulsory, in particular with respect to the improvement of vessel performances. Numerical simulations or experimental methods provide insight into the problem of flow, where fixed pitch propellers or controllable pitch propellers are preferred. While calculation methods are time consuming and computationally demanding for both propeller types, hydrodynamic performance assessment has more workload in controllable pitch propellers. This paper aims to describe and demonstrate the practicability and effectiveness of the self-propulsion estimation (SPE) method in understanding the effect of propeller pitch on ship propulsion. Technically, the hydrostatic and geometric characteristics of the vessel and open-water propeller performances are the focal aspects that affect the self-propulsion parameters estimated by the SPE method. The input coefficients for SPE have been identified using a code that generates propeller open-water performance curves. The propellers utilized to study pitch variations have been based on the Wageningen B-series propeller database. The method was first validated on the full size Seiun Maru ship whose sea trial tests are available in literature. After extensive calculations for full size KCS and DTC at service speeds, the study focused on the effect of the Froude number on propulsion parameters. These calculations have demonstrated that greater propeller pitch does not improve propulsion efficiency, and that maximum propeller efficiency changes with a ship's forward speed.
期刊介绍:
ToMS is a scientific journal with international peer review which publishes papers in the following areas: ~ Marine Engineering, ~ Navigation, ~ Safety Systems, ~ Marine Ecology, ~ Marine Fisheries, ~ Hydrography, ~ Marine Automation and Electronics, ~ Transportation and Modes of Transport, ~ Marine Information Systems, ~ Maritime Law, ~ Management of Marine Systems, ~ Marine Finance, ~ Bleeding-Edge Technologies, ~ Multimodal Transport, ~ Psycho-social and Legal Aspects of Long-term Working Aboard. The journal is published in English as an open access journal, and as a classic paper journal (in limited editions). ToMS aims to present best maritime research from South East Europe, particularly the Mediterranean area. Articles will be double-blind reviewed by three reviewers. With the intention of providing an international perspective at least one of the reviewers will be from abroad. ToMS also promotes scientific collaboration with students and has a section titled Students’ ToMS. These papers also undergo strict peer reviews. Furthermore, the Journal publishes short reviews on significant papers, books and workshops in the fields of maritime science.