大模超低k无铅倒装芯片封装的可靠性

L. Yip
{"title":"大模超低k无铅倒装芯片封装的可靠性","authors":"L. Yip","doi":"10.1109/ECTC.2012.6248937","DOIUrl":null,"url":null,"abstract":"With the industry movement towards lead-free solders and advanced silicon process nodes with ultra low-k dielectrics, flip chip packaging is faced with significant assembly and reliability challenges. Since lead-free solder bumps are brittle, they can easily crack without adequate support from the underfill material during thermal stress. Lead-free solder bumps have less solder fatigue resistance compared to tin-lead eutectic or high-lead bumps and require higher Tg underfills for protection. However, the higher Tg underfill and the higher reflow temperature needed for lead-free bump assembly will increase die stress and package warpage. Since lower k dielectric materials have lower mechanical strength and lower adhesion than the dielectric materials used for prior silicon generations, the high stress induced by the lead-free assembly process and material set can cause delamination within the die, especially in devices with large die and large package sizes. In order to develop and qualify a reliable and robust lead-free package, care must be taken in the materials selection and optimization of the package structure. This paper discusses the effect of different factors such as underfill, substrate core, substrate pad structure, and lid design on package reliability of lead-free fine-pitch flip chip devices. It also reviews the assembly process related factors that impact the reliability of the lead-free bump and ultra low-k devices. Our studies show that a highly reliable lead-free package on organic substrate can be achieved for devices with large die and large package sizes. The reliability results for large die with different silicon nodes from 90 nm to 28 nm are presented.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliability of large die ultra low-k lead-free flip chip packages\",\"authors\":\"L. Yip\",\"doi\":\"10.1109/ECTC.2012.6248937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the industry movement towards lead-free solders and advanced silicon process nodes with ultra low-k dielectrics, flip chip packaging is faced with significant assembly and reliability challenges. Since lead-free solder bumps are brittle, they can easily crack without adequate support from the underfill material during thermal stress. Lead-free solder bumps have less solder fatigue resistance compared to tin-lead eutectic or high-lead bumps and require higher Tg underfills for protection. However, the higher Tg underfill and the higher reflow temperature needed for lead-free bump assembly will increase die stress and package warpage. Since lower k dielectric materials have lower mechanical strength and lower adhesion than the dielectric materials used for prior silicon generations, the high stress induced by the lead-free assembly process and material set can cause delamination within the die, especially in devices with large die and large package sizes. In order to develop and qualify a reliable and robust lead-free package, care must be taken in the materials selection and optimization of the package structure. This paper discusses the effect of different factors such as underfill, substrate core, substrate pad structure, and lid design on package reliability of lead-free fine-pitch flip chip devices. It also reviews the assembly process related factors that impact the reliability of the lead-free bump and ultra low-k devices. Our studies show that a highly reliable lead-free package on organic substrate can be achieved for devices with large die and large package sizes. The reliability results for large die with different silicon nodes from 90 nm to 28 nm are presented.\",\"PeriodicalId\":6384,\"journal\":{\"name\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2012.6248937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6248937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着行业向无铅焊料和具有超低k介电介质的先进硅工艺节点的发展,倒装芯片封装面临着重大的组装和可靠性挑战。由于无铅焊料凸起是脆的,在热应力下,如果没有衬底材料的足够支撑,它们很容易破裂。与锡铅共晶或高铅凸点相比,无铅凸点具有较低的抗焊料疲劳性,并且需要更高的Tg填充来保护。然而,更高的Tg下填充和更高的回流温度需要无铅凸包组装将增加模具应力和封装翘曲。由于较低k介电材料具有较低的机械强度和较低的附着力,因此无铅组装工艺和材料设置引起的高应力可能导致模具内部分层,特别是在具有大模具和大封装尺寸的器件中。为了开发可靠且坚固的无铅封装,必须注意材料的选择和封装结构的优化。本文讨论了衬底填充物、衬底芯、衬底衬底结构和衬底盖设计等不同因素对无铅细间距倒装芯片封装可靠性的影响。它还回顾了影响无铅碰撞和超低k器件可靠性的组装过程相关因素。我们的研究表明,对于大芯片和大封装尺寸的器件,可以在有机基板上实现高可靠的无铅封装。给出了90 ~ 28 nm不同硅节点大型芯片的可靠性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability of large die ultra low-k lead-free flip chip packages
With the industry movement towards lead-free solders and advanced silicon process nodes with ultra low-k dielectrics, flip chip packaging is faced with significant assembly and reliability challenges. Since lead-free solder bumps are brittle, they can easily crack without adequate support from the underfill material during thermal stress. Lead-free solder bumps have less solder fatigue resistance compared to tin-lead eutectic or high-lead bumps and require higher Tg underfills for protection. However, the higher Tg underfill and the higher reflow temperature needed for lead-free bump assembly will increase die stress and package warpage. Since lower k dielectric materials have lower mechanical strength and lower adhesion than the dielectric materials used for prior silicon generations, the high stress induced by the lead-free assembly process and material set can cause delamination within the die, especially in devices with large die and large package sizes. In order to develop and qualify a reliable and robust lead-free package, care must be taken in the materials selection and optimization of the package structure. This paper discusses the effect of different factors such as underfill, substrate core, substrate pad structure, and lid design on package reliability of lead-free fine-pitch flip chip devices. It also reviews the assembly process related factors that impact the reliability of the lead-free bump and ultra low-k devices. Our studies show that a highly reliable lead-free package on organic substrate can be achieved for devices with large die and large package sizes. The reliability results for large die with different silicon nodes from 90 nm to 28 nm are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parasitic electrical and electromagnetic effects Heat management Passive electronic components Interconnection technology Reliability and maintainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1