PySyn:混合信号机器学习分类的快速综合

Farid Kenarangi, Inna Partin-Vaisband
{"title":"PySyn:混合信号机器学习分类的快速综合","authors":"Farid Kenarangi, Inna Partin-Vaisband","doi":"10.1109/MWSCAS47672.2021.9531745","DOIUrl":null,"url":null,"abstract":"Mixed-signal integrated circuits (ICs) for machine learning (ML) have been demonstrated as a powerful tool for efficient and accurate classification of large volumes of complex data. Despite the growing interest in ML ICs, the design process of mixed-signal ML classifiers is dominated by ad hoc approaches. In this paper, a rapid synthesizer is developed in Python (PySyn) for designing compact power-efficient high-performance ML classifiers. Circuit-level ML library is designed and leveraged within the flow. System-level tradeoffs are generated with PySyn and utilized to iteratively adjust the ML performance. PySyn is demonstrated with a state-of-the-art classifier, generating optimized netlists under input constraints.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"15 1","pages":"712-717"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PySyn: A Rapid Synthesis for Mixed-Signal Machine Learning Classification\",\"authors\":\"Farid Kenarangi, Inna Partin-Vaisband\",\"doi\":\"10.1109/MWSCAS47672.2021.9531745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed-signal integrated circuits (ICs) for machine learning (ML) have been demonstrated as a powerful tool for efficient and accurate classification of large volumes of complex data. Despite the growing interest in ML ICs, the design process of mixed-signal ML classifiers is dominated by ad hoc approaches. In this paper, a rapid synthesizer is developed in Python (PySyn) for designing compact power-efficient high-performance ML classifiers. Circuit-level ML library is designed and leveraged within the flow. System-level tradeoffs are generated with PySyn and utilized to iteratively adjust the ML performance. PySyn is demonstrated with a state-of-the-art classifier, generating optimized netlists under input constraints.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"15 1\",\"pages\":\"712-717\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于机器学习(ML)的混合信号集成电路(ic)已被证明是对大量复杂数据进行高效准确分类的强大工具。尽管人们对机器学习集成电路的兴趣日益浓厚,但混合信号机器学习分类器的设计过程仍由特殊方法主导。本文利用Python开发了一个快速合成器(PySyn),用于设计紧凑高效的高性能ML分类器。电路级ML库被设计和利用在流程中。使用PySyn生成系统级权衡,并用于迭代地调整机器学习性能。PySyn使用最先进的分类器进行演示,在输入约束下生成优化的网络列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PySyn: A Rapid Synthesis for Mixed-Signal Machine Learning Classification
Mixed-signal integrated circuits (ICs) for machine learning (ML) have been demonstrated as a powerful tool for efficient and accurate classification of large volumes of complex data. Despite the growing interest in ML ICs, the design process of mixed-signal ML classifiers is dominated by ad hoc approaches. In this paper, a rapid synthesizer is developed in Python (PySyn) for designing compact power-efficient high-performance ML classifiers. Circuit-level ML library is designed and leveraged within the flow. System-level tradeoffs are generated with PySyn and utilized to iteratively adjust the ML performance. PySyn is demonstrated with a state-of-the-art classifier, generating optimized netlists under input constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1