基于单位体平衡及其粒子平衡问题的新分析——现行弹性理论的基本矛盾与新分析

Shuang-hua Huang, Wen-ba Han, Bing-qing Cai
{"title":"基于单位体平衡及其粒子平衡问题的新分析——现行弹性理论的基本矛盾与新分析","authors":"Shuang-hua Huang, Wen-ba Han, Bing-qing Cai","doi":"10.11648/J.AJCE.20190703.11","DOIUrl":null,"url":null,"abstract":"This paper discovered a new concept that the unit balance and particle balance are not equivalent. Based on the research of tensile of uniform section bar, it indicated that the normal stress and shear stress on oblique section can only make sure partly body balance while not every particles. The value of and is less than the equilibrium stress of particles. Besides, the particle balance stress is times of the unit balance stress in the state of pure extension. The extreme stress is not the principal stress of cell body but the balance stress of particle. Using this formula, the problem existed for 350 years that the stretch-shear act on a bar is easer destroyed relate to the compress-shear acted can be explained perfectly. What’s more, this theory has also been validated in the Damage Mechanics National Key Laboratory of Tsinghua University. The error between this theory and actual is only 1%, while based on three and fourth strength theory, the errors are 14.2%, 18.2% respectively. It’s also the root cause of large bridge collapse.","PeriodicalId":7606,"journal":{"name":"American Journal of Civil Engineering","volume":"258 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Analysis Based on Unit Body Balance and Its Particle Balance Problem - The Basic Contradiction and New Analysis of Current Elasticity Theory\",\"authors\":\"Shuang-hua Huang, Wen-ba Han, Bing-qing Cai\",\"doi\":\"10.11648/J.AJCE.20190703.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discovered a new concept that the unit balance and particle balance are not equivalent. Based on the research of tensile of uniform section bar, it indicated that the normal stress and shear stress on oblique section can only make sure partly body balance while not every particles. The value of and is less than the equilibrium stress of particles. Besides, the particle balance stress is times of the unit balance stress in the state of pure extension. The extreme stress is not the principal stress of cell body but the balance stress of particle. Using this formula, the problem existed for 350 years that the stretch-shear act on a bar is easer destroyed relate to the compress-shear acted can be explained perfectly. What’s more, this theory has also been validated in the Damage Mechanics National Key Laboratory of Tsinghua University. The error between this theory and actual is only 1%, while based on three and fourth strength theory, the errors are 14.2%, 18.2% respectively. It’s also the root cause of large bridge collapse.\",\"PeriodicalId\":7606,\"journal\":{\"name\":\"American Journal of Civil Engineering\",\"volume\":\"258 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJCE.20190703.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJCE.20190703.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了单位平衡与粒子平衡不等同的新概念。通过对等截面杆的拉伸研究,指出斜截面上的正应力和剪应力只能保证部分杆体的平衡,而不能保证所有颗粒的平衡。的值小于颗粒的平衡应力。粒子平衡应力为纯伸展状态下的单位平衡应力的倍数。极端应力不是胞体的主应力,而是颗粒的平衡应力。利用这一公式,可以很好地解释存在了350年的拉剪作用比压剪作用更容易破坏的问题。该理论也在清华大学损伤力学国家重点实验室得到了验证。该理论与实际误差仅为1%,而基于三、四强度理论的误差分别为14.2%、18.2%。这也是大型桥梁倒塌的根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Analysis Based on Unit Body Balance and Its Particle Balance Problem - The Basic Contradiction and New Analysis of Current Elasticity Theory
This paper discovered a new concept that the unit balance and particle balance are not equivalent. Based on the research of tensile of uniform section bar, it indicated that the normal stress and shear stress on oblique section can only make sure partly body balance while not every particles. The value of and is less than the equilibrium stress of particles. Besides, the particle balance stress is times of the unit balance stress in the state of pure extension. The extreme stress is not the principal stress of cell body but the balance stress of particle. Using this formula, the problem existed for 350 years that the stretch-shear act on a bar is easer destroyed relate to the compress-shear acted can be explained perfectly. What’s more, this theory has also been validated in the Damage Mechanics National Key Laboratory of Tsinghua University. The error between this theory and actual is only 1%, while based on three and fourth strength theory, the errors are 14.2%, 18.2% respectively. It’s also the root cause of large bridge collapse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformance and Performance Evaluation of Land Use Plan of Yirba Town Performance of Simplified Damage-Based Concrete Models in Seismic Applications Pavement Service Life Prediction with PLAXIS 3D in Bangladesh Surface-Modified Nanoclays for Enhancing Resistance to Moisture Damage in Hot Mix Asphalt Structural Performance Evaluation of Diversion Weir Structure: Case Study of Basaka Small Scale Irrigation Scheme, Oromia, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1